These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37063727)

  • 41. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Yang K; Chen X; Zhu M
    Sci Rep; 2015 Oct; 5():15186. PubMed ID: 26471355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hexagonal CuCo₂O₄ Nanoplatelets, a Highly Active Catalyst for the Hydrolysis of Ammonia Borane for Hydrogen Production.
    Liao J; Feng Y; Wu S; Ye H; Zhang J; Zhang X; Xie F; Li H
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836644
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cu(OH)
    Peng CY; Hou CC; Chen QQ; Wang CJ; Lv XJ; Zhong J; Fu WF; Che CM; Chen Y
    Sci Bull (Beijing); 2018 Dec; 63(23):1583-1590. PubMed ID: 36751080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance.
    Kaya M; Zahmakiran M; Ozkar S; Volkan M
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3866-73. PubMed ID: 22856878
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Co-Cu nanoparticles uniformly embedded in the intra-crystalline mesoporous Silicalite-1 for catalytic ammonia borane hydrolysis.
    Wei H; Cui Y; Hou H; Zheng X; Jin P; Wen Y; Wang X; Liu Y; Li B
    iScience; 2024 May; 27(5):109745. PubMed ID: 38706839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetically Isolable Pt
    Akbayrak S; Özkar S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34341-34348. PubMed ID: 34255473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal-Organic Framework for Enhanced Tandem Catalysis.
    Sun JL; Chen YZ; Ge BD; Li JH; Wang GM
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):940-947. PubMed ID: 30556388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing Effect of Fe
    Guan S; An L; Chen Y; Liu X; Shi J; Sun Y; Fan Y; Liu B
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42909-42916. PubMed ID: 34472335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Promoting Effect of Heterostructured NiO/Ni on Pt Nanocatalysts toward Catalytic Hydrolysis of Ammonia Borane.
    Ren X; Lv H; Yang S; Wang Y; Li J; Wei R; Xu D; Liu B
    J Phys Chem Lett; 2019 Dec; 10(23):7374-7382. PubMed ID: 31725303
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments.
    Wang C; Wang Q; Fu F; Astruc D
    Acc Chem Res; 2020 Oct; 53(10):2483-2493. PubMed ID: 33034454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-small Rh nanoparticles supported on WO
    Li X; Yan Y; Jiang Y; Wu X; Li S; Huang J; Li J; Lin Y; Yang D; Zhang H
    Nanoscale Adv; 2019 Oct; 1(10):3941-3947. PubMed ID: 36132115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile benzene reduction promoted by a synergistically coupled Cu-Co-Ce ternary mixed oxide.
    Chen H; Lin W; Zhang Z; Yang Z; Jie K; Fu J; Yang SZ; Dai S
    Chem Sci; 2020 Jun; 11(22):5766-5771. PubMed ID: 32832052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane.
    Asim M; Maryam B; Zhang S; Sajid M; Kurbanov A; Pan L; Zou JJ
    J Colloid Interface Sci; 2023 May; 638():14-25. PubMed ID: 36731215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.
    Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z
    Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. V-doped activated Ru/Ti
    Bian L; Liang L; Fan Y; Liu X; Liang F; Peng Q; Han S; Liu L; Liu B
    J Colloid Interface Sci; 2024 Oct; 671():543-552. PubMed ID: 38820839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.
    Li C; Wang D; Wang Y; Li G; Hu G; Wu S; Cao Z; Zhang K
    J Colloid Interface Sci; 2018 Aug; 524():25-31. PubMed ID: 29627669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical Study of Hydrogen Production from Ammonia Borane Catalyzed by Metal and Non-Metal Diatom-Doped Cobalt Phosphide.
    Li DH; Li QM; Qi SL; Qin HC; Liang XQ; Li L
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen.
    Wang Q; Xu C; Ming M; Yang Y; Xu B; Wang Y; Zhang Y; Wu J; Fan G
    Nanomaterials (Basel); 2018 Apr; 8(5):. PubMed ID: 29701660
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ni 1-x Pt x (x = 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane.
    Cheng F; Ma H; Li Y; Chen J
    Inorg Chem; 2007 Feb; 46(3):788-94. PubMed ID: 17257021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.