These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37063777)

  • 1. Nanocarriers of shRNA-Runx2 directed to collagen IV as a nanotherapeutic system to target calcific aortic valve disease.
    Voicu G; Mocanu CA; Safciuc F; Anghelache M; Deleanu M; Cecoltan S; Pinteala M; Uritu CM; Droc I; Simionescu M; Manduteanu I; Calin M
    Mater Today Bio; 2023 Jun; 20():100620. PubMed ID: 37063777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VCAM-1 Targeted Lipopolyplexes as Vehicles for Efficient Delivery of shRNA-Runx2 to Osteoblast-Differentiated Valvular Interstitial Cells; Implications in Calcific Valve Disease Treatment.
    Voicu G; Rebleanu D; Mocanu CA; Tanko G; Droc I; Uritu CM; Pinteala M; Manduteanu I; Simionescu M; Calin M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Polyplexes Mediated Transfection of Runx2-shRNA Mitigates the Osteodifferentiation of Human Valvular Interstitial Cells.
    Voicu G; Rebleanu D; Constantinescu CA; Fuior EV; Ciortan L; Droc I; Uritu CM; Pinteala M; Manduteanu I; Simionescu M; Calin M
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32498305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
    Jenke A; Kistner J; Saradar S; Chekhoeva A; Yazdanyar M; Bergmann AK; Rötepohl MV; Lichtenberg A; Akhyari P
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1123-H1141. PubMed ID: 32986963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation.
    Hjortnaes J; Goettsch C; Hutcheson JD; Camci-Unal G; Lax L; Scherer K; Body S; Schoen FJ; Kluin J; Khademhosseini A; Aikawa E
    J Mol Cell Cardiol; 2016 May; 94():13-20. PubMed ID: 26996755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization.
    Éva Sikura K; Combi Z; Potor L; Szerafin T; Hendrik Z; Méhes G; Gergely P; Whiteman M; Beke L; Fürtös I; Balla G; Balla J
    J Adv Res; 2021 Jan; 27():165-176. PubMed ID: 33318875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leptin induces osteoblast differentiation of human valvular interstitial cells via the Akt and ERK pathways.
    Rosa M; Paris C; Sottejeau Y; Corseaux D; Robin E; Tagzirt M; Juthier F; Jashari R; Rauch A; Vincentelli A; Staels B; Van Belle E; Susen S; Dupont A
    Acta Diabetol; 2017 Jun; 54(6):551-560. PubMed ID: 28314924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long noncoding TSI attenuates aortic valve calcification by suppressing TGF-β1-induced osteoblastic differentiation of valve interstitial cells.
    Liu Z; Wang Y; Liu F; Zhu D; Chen Y; Yim WY; Hu K; Rao Z; Pan X; Li F; Dong N
    Metabolism; 2023 Jan; 138():155337. PubMed ID: 36273649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MiR-138-5p targets RUNX2 to inhibit osteogenic differentiation of aortic valve interstitial cells via Wnt/β-catenin signaling pathway.
    Yan F; Huo Q; Zhang W; Wu T; Dilimulati D; Shi L
    BMC Cardiovasc Disord; 2022 Feb; 22(1):24. PubMed ID: 35109802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valve endothelial-interstitial interactions drive emergent complex calcific lesion formation in vitro.
    Gee TW; Richards JM; Mahmut A; Butcher JT
    Biomaterials; 2021 Feb; 269():120669. PubMed ID: 33482604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms involved in high glucose-induced valve calcification in a 3D valve model with human valvular cells.
    Vadana M; Cecoltan S; Ciortan L; Macarie RD; Tucureanu MM; Mihaila AC; Droc I; Butoi E; Manduteanu I
    J Cell Mol Med; 2020 Jun; 24(11):6350-6361. PubMed ID: 32307869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells.
    Wang Y; Han D; Zhou T; Chen C; Cao H; Zhang JZ; Ma N; Liu C; Song M; Shi J; Jin X; Cao F; Dong N
    Eur Heart J; 2021 Aug; 42(30):2935-2951. PubMed ID: 34179958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification.
    Yu C; Li L; Xie F; Guo S; Liu F; Dong N; Wang Y
    Cardiovasc Res; 2018 Jan; 114(1):168-179. PubMed ID: 29016735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation Induces Valvular Interstitial Cell Calcific Response in an
    Meerman M; Driessen R; van Engeland NCA; Bergsma I; Steenhuijsen JLG; Kozono D; Aikawa E; Hjortnaes J; Bouten CVC
    Front Cardiovasc Med; 2021; 8():687885. PubMed ID: 34527708
    [No Abstract]   [Full Text] [Related]  

  • 16. Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation
    Sylvester CB; Amirkhosravi F; Bortoletto AS; West WJ; Connell JP; Grande-Allen KJ
    Front Cardiovasc Med; 2023; 10():1112965. PubMed ID: 37063962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducible In Vitro Tissue Culture Model to Study Basic Mechanisms of Calcific Aortic Valve Disease: Comparative Analysis to Valvular Interstitials Cells.
    Weber A; Pfaff M; Schöttler F; Schmidt V; Lichtenberg A; Akhyari P
    Biomedicines; 2021 Apr; 9(5):. PubMed ID: 33925890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability.
    Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P
    Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional valve-on-chip microphysiological system implicates cell cycle progression, cholesterol metabolism and protein homeostasis in early calcific aortic valve disease progression.
    Tandon I; Woessner AE; Ferreira LA; Shamblin C; Vaca-Diez G; Walls A; Kuczwara P; Applequist A; Nascimento DF; Tandon S; Kim JW; Rausch M; Timek T; Padala M; Kinter MT; Province D; Byrum SD; Quinn KP; Balachandran K
    Acta Biomater; 2024 Sep; 186():167-184. PubMed ID: 39084496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Celastrol Alleviates Aortic Valve Calcification Via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells.
    Liu H; Wang L; Pan Y; Wang X; Ding Y; Zhou C; Shah AM; Zhao G; Zhang M
    JACC Basic Transl Sci; 2020 Jan; 5(1):35-49. PubMed ID: 32043019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.