BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37063802)

  • 1. Control of the assembly of a cyclic hetero[4]pseudorotaxane from a self-complementary [2]rotaxane.
    Saura-Sanmartin A; Nicolas-Garcia T; Pastor A; Quiñonero D; Alajarin M; Martinez-Cuezva A; Berna J
    Chem Sci; 2023 Apr; 14(15):4143-4151. PubMed ID: 37063802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative Self-Sorting: One-Pot Synthesis of a Hetero[4]rotaxane from a Daisy-Chain-Containing Hetero[4]pseudorotaxane.
    Rao SJ; Zhang Q; Ye XH; Gao C; Qu DH
    Chem Asian J; 2018 Apr; 13(7):815-821. PubMed ID: 29424064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthogonal Recognition Processes Drive the Assembly and Replication of a [2]Rotaxane.
    Kosikova T; Hassan NI; Cordes DB; Slawin AM; Philp D
    J Am Chem Soc; 2015 Dec; 137(51):16074-83. PubMed ID: 26473285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. π-Stacking Stopper-Macrocycle Stabilized Dynamically Interlocked [2]Rotaxanes.
    Chan SM; Tang FK; Lam CY; Kwan CS; Hau SCK; Leung KC
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-directed synthesis of multiply mechanically interlocked molecules under thermodynamic control.
    Aricó F; Chang T; Cantrill SJ; Khan SI; Stoddart JF
    Chemistry; 2005 Aug; 11(16):4655-66. PubMed ID: 15887196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient synthesis of a hetero[4]rotaxane by a "threading-stoppering-followed-by-clipping" approach.
    Yin J; Chi C; Wu J
    Org Biomol Chem; 2010 Jun; 8(11):2594-9. PubMed ID: 20379590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Difference Between Rotaxane and Pseudorotaxane.
    Sun HL; Zhang HY; Dai Z; Han X; Liu Y
    Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical study of the adsorption of fumaramide [2]rotaxane on Au(111) and Ag(111) surfaces.
    Mendoza SM; Whelan CM; Jalkanen JP; Zerbetto F; Gatti FG; Kay ER; Leigh DA; Lubomska M; Rudolf P
    J Chem Phys; 2005 Dec; 123(24):244708. PubMed ID: 16396564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlocked host anion recognition by an indolocarbazole-containing [2]rotaxane.
    Brown A; Mullen KM; Ryu J; Chmielewski MJ; Santos SM; Felix V; Thompson AL; Warren JE; Pascu SI; Beer PD
    J Am Chem Soc; 2009 Apr; 131(13):4937-52. PubMed ID: 19296631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly and dynamics of [2]- and [3]rotaxanes with a dinuclear macrocycle containing reversible Os-N coordinate bonds.
    Chang SY; Choi JS; Jeong KS
    Chemistry; 2001 Jun; 7(12):2687-97. PubMed ID: 11465460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane.
    Luo QF; Zhu L; Rao SJ; Li H; Miao Q; Qu DH
    J Org Chem; 2015 May; 80(9):4704-9. PubMed ID: 25874382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible copper(I)-complexed [4]rotaxane containing two face-to-face porphyrinic plates that behaves as a distensible receptor.
    Roche C; Sour A; Sauvage JP
    Chemistry; 2012 Jul; 18(27):8366-76. PubMed ID: 22674865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion-induced shuttling of a naphthalimide triazolium rotaxane.
    Spence GT; Pitak MB; Beer PD
    Chemistry; 2012 Jun; 18(23):7100-8. PubMed ID: 22550020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible control of assembly and disassembly of interlocked supermolecules.
    Chang KJ; An YJ; Uh H; Jeong KS
    J Org Chem; 2004 Oct; 69(20):6556-63. PubMed ID: 15387577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodide-induced shuttling of a halogen- and hydrogen-bonding two-station rotaxane.
    Caballero A; Swan L; Zapata F; Beer PD
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11854-8. PubMed ID: 25213038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five-component, one-pot synthesis of an electroactive rotaxane comprising a bisferrocene macrocycle.
    Lagesse N; Pisciottani L; Douarre M; Godard P; Kauffmann B; Martí-Centelles V; McClenaghan ND
    Beilstein J Org Chem; 2020; 16():1564-1571. PubMed ID: 32704322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotaxane and catenane host structures for sensing charged guest species.
    Langton MJ; Beer PD
    Acc Chem Res; 2014 Jul; 47(7):1935-49. PubMed ID: 24708030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive binding for triggering a fluorescence response in a hydrazodicarboxamide-based [2]rotaxane.
    Berná J; Franco-Pujante C; Alajarín M
    Org Biomol Chem; 2014 Jan; 12(3):474-8. PubMed ID: 24270597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-conformational Exchange Triggered by Molecular Recognition in a Di(acylamino)pyridine-Based Molecular Shuttle Containing Two Pyridine Rings at the Macrocycle.
    Martinez-Cuezva A; Carro-Guillen F; Pastor A; Marin-Luna M; Orenes RA; Alajarin M; Berna J
    Chemphyschem; 2016 Jun; 17(12):1920-6. PubMed ID: 26698891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Fluctuations in Single-Molecule Rotaxane Experiments Reveal an Intermediate Weak Binding State during Shuttling.
    Sluysmans D; Lussis P; Fustin CA; Bertocco A; Leigh DA; Duwez AS
    J Am Chem Soc; 2021 Feb; 143(5):2348-2352. PubMed ID: 33417442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.