These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 37064132)

  • 1. Dysregulation of systemic soluble immune checkpoints in early breast cancer is attenuated following administration of neoadjuvant chemotherapy and is associated with recovery of CD27, CD28, CD40, CD80, ICOS and GITR and substantially increased levels of PD-L1, LAG-3 and TIM-3.
    Rapoport BL; Steel HC; Benn CA; Nayler S; Smit T; Heyman L; Theron AJ; Hlatshwayo N; Kwofie LLI; Meyer PWA; Anderson R
    Front Oncol; 2023; 13():1097309. PubMed ID: 37064132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic Immune Dysregulation in Early Breast Cancer Is Associated With Decreased Plasma Levels of Both Soluble Co-Inhibitory and Co-Stimulatory Immune Checkpoint Molecules.
    Rapoport BL; Steel HC; Hlatshwayo N; Theron AJ; Meyer PWA; Nayler S; Benn CA; Smit T; Kwofie LLI; Heyman L; Anderson R
    Front Immunol; 2022; 13():823842. PubMed ID: 35677046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic levels of the soluble co-inhibitory immune checkpoints, CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3 are markedly increased in basal cell carcinoma.
    Malinga NZ; Siwele SC; Steel HC; Kwofie LLI; Meyer PWA; Smit T; Anderson R; Rapoport BL; Kgokolo MCM
    Transl Oncol; 2022 May; 19():101384. PubMed ID: 35255355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neoadjuvant Chemoradiotherapy Changes the Landscape of Soluble Immune Checkpoint Molecules in Patients With Locally Advanced Rectal Cancer.
    Liu C; Wang P; Sun Y; Dou X; Hu X; Zou W; Sun Y; Hu Q; Yue J
    Front Oncol; 2022; 12():756811. PubMed ID: 35530332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy.
    Labuschagne Naidoo RB; Steel HC; Theron AJ; Anderson R; Tintinger GR; Rossouw TM
    Pathogens; 2024 Jun; 13(7):. PubMed ID: 39057767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patients With Microscopic Colitis Have Altered Levels of Inhibitory and Stimulatory Biomarkers in Colon Biopsies and Sera Compared to Non-inflamed Controls.
    Lushnikova A; Bohr J; Wickbom A; Münch A; Sjöberg K; Hultgren O; Wirén A; Hultgren Hörnquist E
    Front Med (Lausanne); 2021; 8():727412. PubMed ID: 34722568
    [No Abstract]   [Full Text] [Related]  

  • 7. Single-cell mass cytometric analysis of peripheral immunity and multiplex plasma marker profiling of non-small cell lung cancer patients receiving PD-1 targeting immune checkpoint inhibitors in comparison with platinum-based chemotherapy.
    Neuperger P; Szalontai K; Gémes N; Balog JÁ; Tiszlavicz L; Furák J; Lázár G; Puskás LG; Szebeni GJ
    Front Immunol; 2023; 14():1243233. PubMed ID: 37901220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated Levels of Soluble CTLA-4, PD-1, PD-L1, LAG-3 and TIM-3 and Systemic Inflammatory Stress as Potential Contributors to Immune Suppression and Generalized Tumorigenesis in a Cohort of South African Xeroderma Pigmentosum Patients.
    Kgokolo MCM; Anderson K; Siwele SC; Steel HC; Kwofie LLI; Sathekge MM; Meyer PWA; Rapoport BL; Anderson R
    Front Oncol; 2022; 12():819790. PubMed ID: 35223501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer.
    Habel A; Weili X; Hadj Ahmed M; Stayoussef M; Bouaziz H; Ayadi M; Mezlini A; Larbi A; Yaacoubi-Loueslati B
    Int J Biol Markers; 2023 Dec; 38(3-4):203-213. PubMed ID: 37518940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion.
    Bruss C; Kellner K; Albert V; Hutchinson JA; Seitz S; Ortmann O; Brockhoff G; Wege AK
    Cancers (Basel); 2023 May; 15(9):. PubMed ID: 37174080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts.
    Feucht J; Kayser S; Gorodezki D; Hamieh M; Döring M; Blaeschke F; Schlegel P; Bösmüller H; Quintanilla-Fend L; Ebinger M; Lang P; Handgretinger R; Feuchtinger T
    Oncotarget; 2016 Nov; 7(47):76902-76919. PubMed ID: 27708227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble immune checkpoint molecules in patients with antineutrophil cytoplasmic antibody-associated vasculitis.
    Pyo JY; Yoon T; Ahn SS; Song JJ; Park YB; Lee SW
    Sci Rep; 2022 Dec; 12(1):21319. PubMed ID: 36494415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second- and third-generation drugs for immuno-oncology treatment-The more the better?
    Dempke WCM; Fenchel K; Uciechowski P; Dale SP
    Eur J Cancer; 2017 Mar; 74():55-72. PubMed ID: 28335888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4
    Saleh R; Toor SM; Khalaf S; Elkord E
    Vaccines (Basel); 2019 Oct; 7(4):. PubMed ID: 31614877
    [No Abstract]   [Full Text] [Related]  

  • 15. Ki67 and lymphocytes in the pretherapeutic core biopsy of primary invasive breast cancer: positive markers of therapy response prediction and superior survival.
    Schlotter CM; Tietze L; Vogt U; Heinsen CV; Hahn A
    Horm Mol Biol Clin Investig; 2017 Sep; 32(2):. PubMed ID: 28937963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation of immune checkpoint therapy in cancer: new developments and challenges.
    Marin-Acevedo JA; Dholaria B; Soyano AE; Knutson KL; Chumsri S; Lou Y
    J Hematol Oncol; 2018 Mar; 11(1):39. PubMed ID: 29544515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune Co-inhibitory Receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in Medullary Thyroid Cancers: A Large Cohort Study.
    Shi X; Li CW; Tan LC; Wen SS; Liao T; Zhang Y; Chen TZ; Ma B; Yu PC; Lu ZW; Qu N; Wang Y; Shi RL; Wang YL; Ji QH; Wei WJ
    J Clin Endocrinol Metab; 2021 Jan; 106(1):120-132. PubMed ID: 33000173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future.
    Pan M; Zhao H; Jin R; Leung PSC; Shuai Z
    Front Immunol; 2023; 14():1156212. PubMed ID: 37090741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: the MIMOSA-1 study.
    Sarradin V; Lusque A; Filleron T; Dalenc F; Franchet C
    Breast Cancer Res; 2021 May; 23(1):61. PubMed ID: 34039396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy.
    Geng Q; Jiao P
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.