These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 37064362)
1. Automatic deep learning method for detection and classification of breast lesions in dynamic contrast-enhanced magnetic resonance imaging. Gao W; Chen J; Zhang B; Wei X; Zhong J; Li X; He X; Zhao F; Chen X Quant Imaging Med Surg; 2023 Apr; 13(4):2620-2633. PubMed ID: 37064362 [TBL] [Abstract][Full Text] [Related]
2. MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning. Cong C; Li X; Zhang C; Zhang J; Sun K; Liu L; Ambale-Venkatesh B; Chen X; Wang Y J Magn Reson Imaging; 2024 Jan; 59(1):148-161. PubMed ID: 37013422 [TBL] [Abstract][Full Text] [Related]
3. Weakly Supervised Breast Lesion Detection in Dynamic Contrast-Enhanced MRI. Sun R; Wei C; Jiang Z; Huang G; Xie Y; Nie S J Digit Imaging; 2023 Aug; 36(4):1553-1564. PubMed ID: 37253896 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of breast lesions on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using deep transfer learning based on DenseNet201. Meng M; Zhang M; Shen D; He G Medicine (Baltimore); 2022 Nov; 101(45):e31214. PubMed ID: 36397422 [TBL] [Abstract][Full Text] [Related]
5. Improved Classification of Benign and Malignant Breast Lesions Using Deep Feature Maximum Intensity Projection MRI in Breast Cancer Diagnosis Using Dynamic Contrast-enhanced MRI. Hu Q; Whitney HM; Li H; Ji Y; Liu P; Giger ML Radiol Artif Intell; 2021 May; 3(3):e200159. PubMed ID: 34235439 [TBL] [Abstract][Full Text] [Related]
6. Weakly supervised breast lesion detection in DCE-MRI using self-transfer learning. Sun R; Zhang X; Xie Y; Nie S Med Phys; 2023 Aug; 50(8):4960-4972. PubMed ID: 36820793 [TBL] [Abstract][Full Text] [Related]
7. A deep learning model based on dynamic contrast-enhanced magnetic resonance imaging enables accurate prediction of benign and malignant breast lessons. Chen Y; Wang L; Luo R; Wang S; Wang H; Gao F; Wang D Front Oncol; 2022; 12():943415. PubMed ID: 35936673 [TBL] [Abstract][Full Text] [Related]
8. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Milenković J; Hertl K; Košir A; Zibert J; Tasič JF Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472 [TBL] [Abstract][Full Text] [Related]
9. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network. Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176 [TBL] [Abstract][Full Text] [Related]
10. Localization of contrast-enhanced breast lesions in ultrafast screening MRI using deep convolutional neural networks. Jing X; Dorrius MD; Zheng S; Wielema M; Oudkerk M; Sijens PE; van Ooijen PMA Eur Radiol; 2024 Mar; 34(3):2084-2092. PubMed ID: 37658141 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-based Automatic Diagnosis of Breast Cancer on MRI Using Mask R-CNN for Detection Followed by ResNet50 for Classification. Zhang Y; Liu YL; Nie K; Zhou J; Chen Z; Chen JH; Wang X; Kim B; Parajuli R; Mehta RS; Wang M; Su MY Acad Radiol; 2023 Sep; 30 Suppl 2(Suppl 2):S161-S171. PubMed ID: 36631349 [TBL] [Abstract][Full Text] [Related]
12. Automatic breast lesion detection in ultrafast DCE-MRI using deep learning. Ayatollahi F; Shokouhi SB; Mann RM; Teuwen J Med Phys; 2021 Oct; 48(10):5897-5907. PubMed ID: 34370886 [TBL] [Abstract][Full Text] [Related]
13. Detection and classification of breast lesions with You Only Look Once version 5. Meng M; Zhang M; Shen D; He G; Guo Y Future Oncol; 2022 Dec; 18(39):4361-4370. PubMed ID: 36519579 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning approach with convolutional neural network for classification of maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging. Fujioka T; Yashima Y; Oyama J; Mori M; Kubota K; Katsuta L; Kimura K; Yamaga E; Oda G; Nakagawa T; Kitazume Y; Tateishi U Magn Reson Imaging; 2021 Jan; 75():1-8. PubMed ID: 33045323 [TBL] [Abstract][Full Text] [Related]
15. Classification of contrast-enhanced spectral mammography (CESM) images. Perek S; Kiryati N; Zimmerman-Moreno G; Sklair-Levy M; Konen E; Mayer A Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):249-257. PubMed ID: 30367322 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic efficiency of multi-modal MRI based deep learning with Sobel operator in differentiating benign and malignant breast mass lesions-a retrospective study. Tang W; Zhang M; Xu C; Shao Y; Tang J; Gong S; Dong H; Sheng M PeerJ Comput Sci; 2023; 9():e1460. PubMed ID: 37547396 [TBL] [Abstract][Full Text] [Related]
17. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. Cao Z; Duan L; Yang G; Yue T; Chen Q BMC Med Imaging; 2019 Jul; 19(1):51. PubMed ID: 31262255 [TBL] [Abstract][Full Text] [Related]
18. Automatic Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non-Fat-Sat Images and Tested on Fat-Sat Images. Zhang Y; Chan S; Park VY; Chang KT; Mehta S; Kim MJ; Combs FJ; Chang P; Chow D; Parajuli R; Mehta RS; Lin CY; Chien SH; Chen JH; Su MY Acad Radiol; 2022 Jan; 29 Suppl 1(Suppl 1):S135-S144. PubMed ID: 33317911 [TBL] [Abstract][Full Text] [Related]
19. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study. Gao X; Wang X Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430 [TBL] [Abstract][Full Text] [Related]
20. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Hu Q; Whitney HM; Giger ML Sci Rep; 2020 Jun; 10(1):10536. PubMed ID: 32601367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]