These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 37064376)
1. Using radiomics based on multicenter magnetic resonance images to predict isocitrate dehydrogenase mutation status of gliomas. Liu Y; Zheng Z; Wang Z; Qian X; Yao Z; Cheng C; Zhou Z; Gao F; Dai Y Quant Imaging Med Surg; 2023 Apr; 13(4):2143-2155. PubMed ID: 37064376 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study. Lu J; Xu W; Chen X; Wang T; Li H Magn Reson Imaging; 2023 Dec; 104():72-79. PubMed ID: 37778708 [TBL] [Abstract][Full Text] [Related]
3. Predicting Isocitrate Dehydrogenase (IDH) Mutation Status in Gliomas Using Multiparameter MRI Radiomics Features. Peng H; Huo J; Li B; Cui Y; Zhang H; Zhang L; Ma L J Magn Reson Imaging; 2021 May; 53(5):1399-1407. PubMed ID: 33179832 [TBL] [Abstract][Full Text] [Related]
4. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613 [TBL] [Abstract][Full Text] [Related]
5. Comparison of MRI Sequences to Predict Kasap DNG; Mora NGN; Blömer DA; Akkurt BH; Heindel WL; Mannil M; Musigmann M Biomedicines; 2024 Mar; 12(4):. PubMed ID: 38672080 [TBL] [Abstract][Full Text] [Related]
6. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging. Dai H; Lu M; Huang B; Tang M; Pang T; Liao B; Cai H; Huang M; Zhou Y; Chen X; Ding H; Feng ST Quant Imaging Med Surg; 2021 May; 11(5):1836-1853. PubMed ID: 33936969 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning and conventional radiomics to predict Zhang H; Fan X; Zhang J; Wei Z; Feng W; Hu Y; Ni J; Yao F; Zhou G; Wan C; Zhang X; Wang J; Liu Y; You Y; Yu Y Front Oncol; 2023; 13():1143688. PubMed ID: 37711207 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: a consecutive L-[methyl-11C] methionine cohort study with two PET scanners. Zhou W; Wen J; Huang Q; Zeng Y; Zhou Z; Zhu Y; Chen L; Guan Y; Xie F; Zhuang D; Hua T Eur J Nucl Med Mol Imaging; 2024 Apr; 51(5):1423-1435. PubMed ID: 38110710 [TBL] [Abstract][Full Text] [Related]
9. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI. Zhang X; Tian Q; Wang L; Liu Y; Li B; Liang Z; Gao P; Zheng K; Zhao B; Lu H J Magn Reson Imaging; 2018 Oct; 48(4):916-926. PubMed ID: 29394005 [TBL] [Abstract][Full Text] [Related]
10. Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach. Kandalgaonkar P; Sahu A; Saju AC; Joshi A; Mahajan A; Thakur M; Sahay A; Epari S; Sinha S; Dasgupta A; Chatterjee A; Shetty P; Moiyadi A; Agarwal J; Gupta T; Goda JS Front Oncol; 2022; 12():879376. PubMed ID: 36276136 [TBL] [Abstract][Full Text] [Related]
11. Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data. Ni J; Zhang H; Yang Q; Fan X; Xu J; Sun J; Zhang J; Hu Y; Xiao Z; Zhao Y; Zhu H; Shi X; Feng W; Wang J; Wan C; Zhang X; Liu Y; You Y; Yu Y Acad Radiol; 2024 Aug; 31(8):3397-3405. PubMed ID: 38458887 [TBL] [Abstract][Full Text] [Related]
12. Enhancing predictability of IDH mutation status in glioma patients at initial diagnosis: a comparative analysis of radiomics from MRI, [ Kaiser L; Quach S; Zounek AJ; Wiestler B; Zatcepin A; Holzgreve A; Bollenbacher A; Bartos LM; Ruf VC; Böning G; Thon N; Herms J; Riemenschneider MJ; Stöcklein S; Brendel M; Rupprecht R; Tonn JC; Bartenstein P; von Baumgarten L; Ziegler S; Albert NL Eur J Nucl Med Mol Imaging; 2024 Jul; 51(8):2371-2381. PubMed ID: 38396261 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the Molecular Subtype of IDH Mutation Combined with MGMT Promoter Methylation in Gliomas via Radiomics Based on Preoperative MRI. Sha Y; Yan Q; Tan Y; Wang X; Zhang H; Yang G Cancers (Basel); 2023 Feb; 15(5):. PubMed ID: 36900232 [TBL] [Abstract][Full Text] [Related]
14. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm. Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433 [TBL] [Abstract][Full Text] [Related]
15. Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas. Zhang H; Ouyang Y; Zhang H; Zhang Y; Su R; Zhou B; Yang W; Lei Y; Huang B Clin Radiol; 2024 May; 79(5):e682-e691. PubMed ID: 38402087 [TBL] [Abstract][Full Text] [Related]
16. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q