BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 37064914)

  • 1. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology.
    Arif S; Munawar S; Ali H
    Front Physiol; 2023; 14():1153268. PubMed ID: 37064914
    [No Abstract]   [Full Text] [Related]  

  • 2. An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data.
    Houshmand S; Kazemi R; Salmanzadeh H
    J Med Signals Sens; 2022; 12(4):294-305. PubMed ID: 36726417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain-Computer Interface.
    Arif S; Khan MJ; Naseer N; Hong KS; Sajid H; Ayaz Y
    Front Hum Neurosci; 2021; 15():658444. PubMed ID: 33994983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks.
    Chen J; Wang H; Hua C
    Int J Psychophysiol; 2018 Nov; 133():120-130. PubMed ID: 30081067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability.
    Awais M; Badruddin N; Drieberg M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal.
    B VP; Chinara S
    J Neurosci Methods; 2021 Jan; 347():108927. PubMed ID: 32941920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drowsiness detection using portable wireless EEG.
    Gangadharan K S; Vinod AP
    Comput Methods Programs Biomed; 2022 Feb; 214():106535. PubMed ID: 34861615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and interpretation of a multimodal drowsiness detection system using explainable machine learning.
    Hasan MM; Watling CN; Larue GS
    Comput Methods Programs Biomed; 2024 Jan; 243():107925. PubMed ID: 38000319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram.
    Ogino M; Mitsukura Y
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30567347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of drowsiness using EEG signals in young Indonesian drivers.
    Puspasari MA; Syaifullah DH; Iqbal BM; Afranovka VA; Madani ST; Susetyo AK; Arista SA
    Heliyon; 2023 Sep; 9(9):e19499. PubMed ID: 37810083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization.
    Stancin I; Frid N; Cifrek M; Jovic A
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid approach for driver drowsiness detection utilizing practical data to improve performance system and applicability.
    Khanehshenas F; Mazloumi A; Nahvi A; Nickabadi A; Sadeghniiat K; Rahimiforoushani A; Aghamalizadeh A
    Work; 2024; 77(4):1165-1177. PubMed ID: 38007634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals.
    Hu J
    Front Comput Neurosci; 2017; 11():72. PubMed ID: 28824409
    [No Abstract]   [Full Text] [Related]  

  • 15. Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection : SEEGDD.
    Balam VP; Chinara S
    Phys Eng Sci Med; 2021 Sep; 44(3):713-726. PubMed ID: 34057671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications.
    Ali MU; Zafar A; Kallu KD; Masood H; Mannan MMN; Ibrahim MM; Kim S; Khan MA
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3361-3370. PubMed ID: 37436864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drowsiness Detection Using Ocular Indices from EEG Signal.
    Tarafder S; Badruddin N; Yahya N; Nasution AH
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-Based Index for Timely Detecting User's Drowsiness Occurrence in Automotive Applications.
    Di Flumeri G; Ronca V; Giorgi A; Vozzi A; Aricò P; Sciaraffa N; Zeng H; Dai G; Kong W; Babiloni F; Borghini G
    Front Hum Neurosci; 2022; 16():866118. PubMed ID: 35669201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.