These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37065034)

  • 1. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.
    Myrovali E; Papadopoulos K; Charalampous G; Kesapidou P; Vourlias G; Kehagias T; Angelakeris M; Wiedwald U
    ACS Omega; 2023 Apr; 8(14):12955-12967. PubMed ID: 37065034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe
    Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.
    Shah RR; Dombrowsky AR; Paulson AL; Johnson MP; Nikles DE; Brazel CS
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():18-29. PubMed ID: 27523991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.
    Shubitidze F; Kekalo K; Stigliano R; Baker I
    J Appl Phys; 2015 Mar; 117(9):094302. PubMed ID: 25825545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results.
    Astefanoaei I; Gimaev R; Zverev V; Tishin A; Stancu A
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.
    Khandhar AP; Ferguson RM; Krishnan KM
    J Appl Phys; 2011 Apr; 109(7):7B310-7B3103. PubMed ID: 21523253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles.
    Wong W; Gan WL; Teo YK; Lew WS
    Nanoscale Res Lett; 2019 Dec; 14(1):376. PubMed ID: 31845087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.
    Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I
    Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia.
    Khandhar AP; Ferguson RM; Simon JA; Krishnan KM
    J Appl Phys; 2012 Apr; 111(7):7B306-7B3063. PubMed ID: 22393267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
    Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J
    Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermal Traits of MNPs under High-Frequency Magnetic Fields: Disentangling the Effect of Size and Coating.
    Aurélio D; Mikšátko J; Veverka M; Michlová M; Kalbáč M; Vejpravová J
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.
    Khandhar AP; Ferguson RM; Simon JA; Krishnan KM
    J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating.
    Etheridge ML; Bischof JC
    Ann Biomed Eng; 2013 Jan; 41(1):78-88. PubMed ID: 22855120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.