These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37065424)

  • 1. Study of Biomechanics of the Heart Valve Leaflet Apparatus Using Numerical Simulation Method.
    Klyshnikov KY; Onischenko PS; Ovcharenko ЕА
    Sovrem Tekhnologii Med; 2022; 14(2):6-14. PubMed ID: 37065424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Algorithm for Automatic Generation and Evaluation of Leaflet Apparatus Models for Heart Valve Prostheses.
    Onischenko PS; Klyshnikov KY; Ovcharenko ЕА; Barbarash LS
    Sovrem Tekhnologii Med; 2022; 14(4):6-14. PubMed ID: 37179983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flat or curved pericardial aortic valve cusps: a finite element study.
    Lim KH; Candra J; Yeo JH; Duran CM
    J Heart Valve Dis; 2004 Sep; 13(5):792-7. PubMed ID: 15473482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement.
    Zhu G; Ismail MB; Nakao M; Yuan Q; Yeo JH
    PLoS One; 2019; 14(1):e0210780. PubMed ID: 30699210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method to quantitate bioprosthetic valve leaflet mechanical stress: a numerical and in vitro study.
    Stanová V; Godio Raboutet Y; Masson C; Py M; Barragan P; Thollon L; Rieu R; Pibarot P
    EuroIntervention; 2019 Sep; 15(7):581-585. PubMed ID: 31130522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel design of a polymeric aortic valve.
    Gharaie SH; Morsi Y
    Int J Artif Organs; 2015 May; 38(5):259-70. PubMed ID: 26044657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.
    Xuan Y; Krishnan K; Ye J; Dvir D; Guccione JM; Ge L; Tseng EE
    J Thorac Cardiovasc Surg; 2017 May; 153(5):1065-1073. PubMed ID: 28108064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaflet stress quantification of porcine vs bovine surgical bioprostheses: an
    Stanová V; Godio Raboutet Y; Barragan P; Thollon L; Pibarot P; Rieu R
    Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):40-51. PubMed ID: 34219548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry.
    Xiong FL; Goetz WA; Chong CK; Chua YL; Pfeifer S; Wintermantel E; Yeo JH
    Ann Biomed Eng; 2010 May; 38(5):1908-18. PubMed ID: 20213213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves.
    Dellimore K; Kemp I; Scheffer C; Weich H; Doubell A
    Australas Phys Eng Sci Med; 2013 Dec; 36(4):473-86. PubMed ID: 24264225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stent and leaflet stresses in 26-mm, third-generation, balloon-expandable transcatheter aortic valve.
    Xuan Y; Dvir D; Wang Z; Mizoguchi T; Ye J; Guccione JM; Ge L; Tseng EE
    J Thorac Cardiovasc Surg; 2019 Feb; 157(2):528-536. PubMed ID: 30041923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness.
    Abbasi M; Azadani AN
    J Heart Valve Dis; 2017 Jul; 26(4):386-396. PubMed ID: 29302937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
    Zhang W; Motiwale S; Hsu MC; Sacks MS
    J Mech Behav Biomed Mater; 2021 Nov; 123():104745. PubMed ID: 34482092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the aortic valve affect leaflet stress distributions: implications for aortic valve degeneration.
    Singh R; Strom JA; Ondrovic L; Joseph B; VanAuker MD
    J Heart Valve Dis; 2008 May; 17(3):290-8; discussion 299. PubMed ID: 18592926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data.
    Conti CA; Della Corte A; Votta E; Del Viscovo L; Bancone C; De Santo LS; Redaelli A
    J Thorac Cardiovasc Surg; 2010 Oct; 140(4):890-6, 896.e1-2. PubMed ID: 20363481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.