These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37065652)

  • 21. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering.
    Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation.
    Tavares MT; Gaspar VM; Monteiro MV; S Farinha JP; Baleizão C; Mano JF
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33455952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
    Anand R; Salar Amoli M; Huysecom AS; Amorim PA; Agten H; Geris L; Bloemen V
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35700719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration.
    Lim KS; Abinzano F; Bernal PN; Albillos Sanchez A; Atienza-Roca P; Otto IA; Peiffer QC; Matsusaki M; Woodfield TBF; Malda J; Levato R
    Adv Healthc Mater; 2020 Aug; 9(15):e1901792. PubMed ID: 32324342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.
    Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit.
    Deng T; Lv J; Pang J; Liu B; Ke J
    J Tissue Eng Regen Med; 2014 Jul; 8(7):546-56. PubMed ID: 22777833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats].
    Jin RH; Zhang ZZ; Xu PQ; Xia SZ; Weng TT; Zhu ZK; Wang XG; You CG; Han CM
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2023 Feb; 39(2):165-174. PubMed ID: 36878526
    [No Abstract]   [Full Text] [Related]  

  • 31. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration.
    Lu J; Shen X; Sun X; Yin H; Yang S; Lu C; Wang Y; Liu Y; Huang Y; Yang Z; Dong X; Wang C; Guo Q; Zhao L; Sun X; Lu S; Mikos AG; Peng J; Wang X
    Theranostics; 2018; 8(18):5039-5058. PubMed ID: 30429885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects.
    Deng C; Yang J; He H; Ma Z; Wang W; Zhang Y; Li T; He C; Wang J
    Biomater Sci; 2021 Jul; 9(14):4891-4903. PubMed ID: 34047307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects.
    Hölzl K; Fürsatz M; Göcerler H; Schädl B; Žigon-Branc S; Markovic M; Gahleitner C; Hoorick JV; Van Vlierberghe S; Kleiner A; Baudis S; Pauschitz A; Redl H; Ovsianikov A; Nürnberger S
    J Tissue Eng Regen Med; 2022 Feb; 16(2):207-222. PubMed ID: 34861104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair.
    Huang J; Huang Z; Liang Y; Yuan W; Bian L; Duan L; Rong Z; Xiong J; Wang D; Xia J
    Biomater Sci; 2021 Apr; 9(7):2620-2630. PubMed ID: 33595025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair.
    Huang C; Zhang X; Luo H; Pan J; Cui W; Cheng B; Zhao S; Chen G
    J Shoulder Elbow Surg; 2021 Mar; 30(3):544-553. PubMed ID: 32650072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteochondral regeneration using scaffold-free constructs of adipose tissue-derived mesenchymal stem cells made by a bio three-dimensional printer with a needle-array in rabbits.
    Murata D; Kunitomi Y; Harada K; Tokunaga S; Takao S; Nakayama K
    Regen Ther; 2020 Dec; 15():77-89. PubMed ID: 33426205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β
    Liu X; Wang Z; Xu C; Guan J; Wei B; Liu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):904-912. PubMed ID: 34308601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep.
    Yang Z; Cao F; Li H; He S; Zhao T; Deng H; Li J; Sun Z; Hao C; Xu J; Guo Q; Liu S; Guo W
    Acta Biomater; 2022 Sep; 150():181-198. PubMed ID: 35896136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.