BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 37065674)

  • 1. 1Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection.
    Xiaorui L; Fuyin Z; Xudong W; Xuezheng G; Shudong Z; Hui L; Dandan D; Yubing L; Lizhen W; Yubo F
    Int J Bioprint; 2023; 9(2):649. PubMed ID: 37065674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printability-A key issue in extrusion-based bioprinting.
    Naghieh S; Chen X
    J Pharm Anal; 2021 Oct; 11(5):564-579. PubMed ID: 34765269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review.
    Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A
    Gels; 2022 Mar; 8(3):. PubMed ID: 35323292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-decellularized printing of cartilage extracellular matrix: distinction between biomaterial ink and bioink.
    Mokhtarinia K; Masaeli E
    Biomater Sci; 2023 Mar; 11(7):2317-2329. PubMed ID: 36751955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering.
    Fornetti E; De Paolis F; Fuoco C; Bernardini S; Giannitelli SM; Rainer A; Seliktar D; Magdinier F; Baldi J; Biagini R; Cannata S; Testa S; Gargioli C
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36689776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood-derived biomaterials for tissue graft biofabrication by solvent-based extrusion bioprinting.
    Amo CD; Andia I
    Int J Bioprint; 2023; 9(5):762. PubMed ID: 37457947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion.
    Fisch P; Holub M; Zenobi-Wong M
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33086207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views.
    Malekpour A; Chen X
    J Funct Biomater; 2022 Apr; 13(2):. PubMed ID: 35466222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterials / bioinks and extrusion bioprinting.
    Chen XB; Fazel Anvari-Yazdi A; Duan X; Zimmerling A; Gharraei R; Sharma NK; Sweilem S; Ning L
    Bioact Mater; 2023 Oct; 28():511-536. PubMed ID: 37435177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a Crystalline Nanocellulose Embedded Agarose Biomaterial Ink for Bone Marrow-Derived Mast Cell Culture.
    Karamchand L; Wagner A; Alam SB; Kulka M
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.