These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37066064)

  • 1. Using DNA barcoding and field surveys to guide wildlife management at Nanjing Lukou International Airport, China.
    Chen W; Miao K; Liu Y; Zhang J; Zhao Y; Hu D; Wang P; Li P; Chang Q; Hu C
    Ecol Evol; 2023 Apr; 13(4):e10005. PubMed ID: 37066064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of landscape in shaping bird community and implications for landscape management at Nanjing Lukou International Airport.
    Yuan S; Miao K; Qian R; Zhao Y; Hu D; Hu C; Chang Q
    Ecol Evol; 2023 Jan; 13(1):e9646. PubMed ID: 36620403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avian diversity and bird-aircraft strike problems in Bahir Dar International Airport, Bahir Dar, Ethiopia.
    Tefera T; Ejigu D; Tassie N
    BMC Zool; 2022 Jun; 7(1):36. PubMed ID: 37170328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three novel bird strike likelihood modelling techniques: The case of Brisbane Airport, Australia.
    Andrews R; Bevrani B; Colin B; Wynn MT; Ter Hofstede AHM; Ring J
    PLoS One; 2022; 17(12):e0277794. PubMed ID: 36480543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Managing birds and controlling aircraft in the kennedy airport-jamaica bay wildlife refuge complex: the need for hard data and soft opinions.
    Brown KM; Erwin RM; Richmond ME; Buckley PA; Tanacredi JT; Avrin D
    Environ Manage; 2001 Aug; 28(2):207-24. PubMed ID: 11443385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A heuristic risk assessment technique for birdstrike management at airports.
    Allan J
    Risk Anal; 2006 Jun; 26(3):723-9. PubMed ID: 16834629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Avian diversity and bird strike risk at Fuyang Airport].
    Li YM; Jiang SL; Nie CP; Zhou HL; Li YY; Chen NT; Zhao ZH
    Ying Yong Sheng Tai Xue Bao; 2011 Jul; 22(7):1914-20. PubMed ID: 22007473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using DNA barcodes to identify a bird involved in a birdstrike at a Chinese airport.
    Yang R; Wu X; Yan P; Li X
    Mol Biol Rep; 2010 Oct; 37(7):3517-23. PubMed ID: 20033492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Land-Use Perspective for Birdstrike Risk Assessment: The Attraction Risk Index.
    Coccon F; Zucchetta M; Bossi G; Borrotti M; Torricelli P; Franzoi P
    PLoS One; 2015; 10(6):e0128363. PubMed ID: 26114958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wildlife strike risk assessment in several Italian airports: lessons from BRI and a new methodology implementation.
    Soldatini C; Albores-Barajas YV; Lovato T; Andreon A; Torricelli P; Montemaggiori A; Corsa C; Georgalas V
    PLoS One; 2011; 6(12):e28920. PubMed ID: 22194950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Patterns of bird nocturnal migration at Shenyang Taoxian International Airport, Northeast China].
    Wang Y; Shi Y; Jin LY; Guan S; Huang ZQ; Hao HY; Wan DM; Li DL
    Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):292-300. PubMed ID: 30907552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral traits and airport type affect mammal incidents with U.S. civil aircraft.
    Schwarz KB; Belant JL; Martin JA; DeVault TL; Wang G
    Environ Manage; 2014 Oct; 54(4):908-18. PubMed ID: 25082299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating small mammal community variables into aircraft-wildlife collision management plans at Namibian airports.
    Hauptfleisch ML; Avenant NL
    Integr Zool; 2015 Nov; 10(6):515-30. PubMed ID: 26331534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of avian hazards to military aircraft and implications for wildlife management.
    Pfeiffer MB; Blackwell BF; DeVault TL
    PLoS One; 2018; 13(11):e0206599. PubMed ID: 30383828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.
    Washburn BE; Swearingin RM; Pullins CK; Rice ME
    Environ Manage; 2016 Jun; 57(6):1230-9. PubMed ID: 26956765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of the COVID-19 pandemic on wildlife-aircraft collisions at US airports.
    Altringer L; McKee SC; Kougher JD; Begier MJ; Shwiff SA
    Sci Rep; 2023 Jul; 13(1):11602. PubMed ID: 37463933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Barcoding of Birds at a Migratory Hotspot in Eastern Turkey Highlights Continental Phylogeographic Relationships.
    Bilgin R; Ebeoğlu N; İnak S; Kırpık MA; Horns JJ; Şekercioğlu ÇH
    PLoS One; 2016; 11(6):e0154454. PubMed ID: 27304877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crowded skies: Conflicts between expanding goose populations and aviation safety.
    Bradbeer DR; Rosenquist C; Christensen TK; Fox AD
    Ambio; 2017 Mar; 46(Suppl 2):290-300. PubMed ID: 28215013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabarcoding avian diets at airports: implications for birdstrike hazard management planning.
    Coghlan ML; White NE; Murray DC; Houston J; Rutherford W; Bellgard MI; Haile J; Bunce M
    Investig Genet; 2013 Dec; 4(1):27. PubMed ID: 24330620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A birdstrike risk assessment model and its application at Ordos Airport, China.
    Hu Y; Xing P; Yang F; Feng G; Yang G; Zhang Z
    Sci Rep; 2020 Nov; 10(1):19627. PubMed ID: 33184337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.