These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37066104)

  • 1. Assessing epidemic curves for evidence of superspreading.
    Meagher J; Friel N
    J R Stat Soc Ser A Stat Soc; 2022 Oct; 185(4):2179-2202. PubMed ID: 37066104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical framework for tracking the time-varying superspreading potential of COVID-19 epidemic.
    Guo Z; Zhao S; Lee SS; Hung CT; Wong NS; Chow TY; Yam CHK; Wang MH; Wang J; Chong KC; Yeoh EK
    Epidemics; 2023 Mar; 42():100670. PubMed ID: 36709540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chopping the tail: How preventing superspreading can help to maintain COVID-19 control.
    Kain MP; Childs ML; Becker AD; Mordecai EA
    Epidemics; 2021 Mar; 34():100430. PubMed ID: 33360871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the effective reproduction number for heterogeneous models using incidence data.
    Jorge DCP; Oliveira JF; Miranda JGV; Andrade RFS; Pinho STR
    R Soc Open Sci; 2022 Sep; 9(9):220005. PubMed ID: 36133147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disease momentum: Estimating the reproduction number in the presence of superspreading.
    Johnson KD; Beiglböck M; Eder M; Grass A; Hermisson J; Pammer G; Polechová J; Toneian D; Wölfl B
    Infect Dis Model; 2021; 6():706-728. PubMed ID: 33824936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number.
    Gressani O; Wallinga J; Althaus CL; Hens N; Faes C
    PLoS Comput Biol; 2022 Oct; 18(10):e1010618. PubMed ID: 36215319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different forms of superspreading lead to different outcomes: Heterogeneity in infectiousness and contact behavior relevant for the case of SARS-CoV-2.
    Kuylen EJ; Torneri A; Willem L; Libin PJK; Abrams S; Coletti P; Franco N; Verelst F; Beutels P; Liesenborgs J; Hens N
    PLoS Comput Biol; 2022 Aug; 18(8):e1009980. PubMed ID: 35994497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal dynamics of superspreading events in the 2014-2015 West Africa Ebola epidemic.
    Lau MS; Dalziel BD; Funk S; McClelland A; Tiffany A; Riley S; Metcalf CJ; Grenfell BT
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2337-2342. PubMed ID: 28193880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.
    Chowell G; Nishiura H; Bettencourt LM
    J R Soc Interface; 2007 Feb; 4(12):155-66. PubMed ID: 17254982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate epidemic count time series model.
    Koyama S
    PLoS One; 2023; 18(6):e0287389. PubMed ID: 37327242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing superspreading of SARS-CoV-2 : from mechanism to measurement.
    Susswein Z; Bansal S
    medRxiv; 2020 Dec; ():. PubMed ID: 33330874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for the Potential of Overdispersion in Estimation of the Time-varying Reproduction Number.
    Ho F; Parag KV; Adam DC; Lau EHY; Cowling BJ; Tsang TK
    Epidemiology; 2023 Mar; 34(2):201-205. PubMed ID: 36722802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angular reproduction numbers improve estimates of transmissibility when disease generation times are misspecified or time-varying.
    Parag KV; Cowling BJ; Lambert BC
    Proc Biol Sci; 2023 Sep; 290(2007):20231664. PubMed ID: 37752839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009.
    Nishiura H; Chowell G; Safan M; Castillo-Chavez C
    Theor Biol Med Model; 2010 Jan; 7():1. PubMed ID: 20056004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferencing superspreading potential using zero-truncated negative binomial model: exemplification with COVID-19.
    Zhao S; Shen M; Musa SS; Guo Z; Ran J; Peng Z; Zhao Y; Chong MKC; He D; Wang MH
    BMC Med Res Methodol; 2021 Feb; 21(1):30. PubMed ID: 33568100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks.
    Obadia T; Haneef R; Boëlle PY
    BMC Med Inform Decis Mak; 2012 Dec; 12():147. PubMed ID: 23249562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of R(t) based on illness onset data: An analysis of 1907-1908 smallpox epidemic in Tokyo.
    Nakajo K; Nishiura H
    Epidemics; 2022 Mar; 38():100545. PubMed ID: 35152059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity is a key factor describing the initial outbreak of COVID-19.
    Kim S; Abdulali A; Lee S
    Appl Math Model; 2023 May; 117():714-725. PubMed ID: 36643779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the basic reproduction number for single-strain dengue fever epidemics.
    Khan A; Hassan M; Imran M
    Infect Dis Poverty; 2014; 3():12. PubMed ID: 24708869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.