These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37066604)
1. The modulated oxygen evolution reaction performance of LaFeO Zhang Y; Xu H; Liu M; Qi J; Hu L; Feng M; Lü W Phys Chem Chem Phys; 2023 Apr; 25(16):11725-11731. PubMed ID: 37066604 [TBL] [Abstract][Full Text] [Related]
2. Arousing the Reactive Fe Sites in Pyrite (FeS Tan Z; Sharma L; Kakkar R; Meng T; Jiang Y; Cao M Inorg Chem; 2019 Jun; 58(11):7615-7627. PubMed ID: 31074996 [TBL] [Abstract][Full Text] [Related]
3. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Liu Y; Ying Y; Fei L; Liu Y; Hu Q; Zhang G; Pang SY; Lu W; Mak CL; Luo X; Zhou L; Wei M; Huang H J Am Chem Soc; 2019 May; 141(20):8136-8145. PubMed ID: 31017412 [TBL] [Abstract][Full Text] [Related]
5. Understanding the role of Cl doping in the oxygen evolution reaction on cuprous oxide by DFT. Chen HH; Ji Y; Fan T Phys Chem Chem Phys; 2022 Oct; 24(41):25347-25355. PubMed ID: 36239135 [TBL] [Abstract][Full Text] [Related]
6. Operando spectroscopies capturing surface reconstruction and interfacial electronic regulation by FeOOH@Fe Tang M; Liu X; Ali A; He Y; Shen P; Ouyang Y J Colloid Interface Sci; 2023 Apr; 636():501-511. PubMed ID: 36652825 [TBL] [Abstract][Full Text] [Related]
7. Assembling and Regulating of Transition Metal-Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. Shao W; Xiao M; Yang C; Cheng M; Cao S; He C; Zhou M; Ma T; Cheng C; Li S Small; 2022 Feb; 18(7):e2105763. PubMed ID: 34866325 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic Study of the Synergy between Iron and Transition Metals for the Catalysis of the Oxygen Evolution Reaction. Gong L; Koh J; Yeo BS ChemSusChem; 2018 Nov; 11(21):3790-3795. PubMed ID: 30191682 [TBL] [Abstract][Full Text] [Related]
9. Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems. Cheng X; Kim BJ; Fabbri E; Schmidt TJ ACS Appl Mater Interfaces; 2019 Sep; 11(38):34787-34795. PubMed ID: 31469262 [TBL] [Abstract][Full Text] [Related]
10. Push-Pull Electronic Effects in Surface-Active Sites Enhance Electrocatalytic Oxygen Evolution on Transition Metal Oxides. Garcés-Pineda FA; Chuong Nguyën H; Blasco-Ahicart M; García-Tecedor M; de Fez Febré M; Tang PY; Arbiol J; Giménez S; Galán-Mascarós JR; López N ChemSusChem; 2021 Mar; 14(6):1595-1601. PubMed ID: 33512070 [TBL] [Abstract][Full Text] [Related]
11. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. Zhao Y; Wan W; Dongfang N; Triana CA; Douls L; Huang C; Erni R; Iannuzzi M; Patzke GR ACS Nano; 2022 Sep; 16(9):15318-15327. PubMed ID: 36069492 [TBL] [Abstract][Full Text] [Related]
12. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Zhu YP; Guo C; Zheng Y; Qiao SZ Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437 [TBL] [Abstract][Full Text] [Related]
13. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Zhu K; Zhu X; Yang W Angew Chem Int Ed Engl; 2019 Jan; 58(5):1252-1265. PubMed ID: 29665168 [TBL] [Abstract][Full Text] [Related]
14. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. Gao J; Tao H; Liu B Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587 [TBL] [Abstract][Full Text] [Related]
15. Pyrochlores for Advanced Oxygen Electrocatalysis. Gayen P; Saha S; Ramani V Acc Chem Res; 2022 Aug; 55(16):2191-2200. PubMed ID: 35878953 [TBL] [Abstract][Full Text] [Related]
16. Ligand Modulation of Active Sites to Promote Electrocatalytic Oxygen Evolution. Huang W; Li J; Liao X; Lu R; Ling C; Liu X; Meng J; Qu L; Lin M; Hong X; Zhou X; Liu S; Zhao Y; Zhou L; Mai L Adv Mater; 2022 May; 34(18):e2200270. PubMed ID: 35278337 [TBL] [Abstract][Full Text] [Related]
17. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Li X; Lei H; Xie L; Wang N; Zhang W; Cao R Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330 [TBL] [Abstract][Full Text] [Related]
18. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery. Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218 [TBL] [Abstract][Full Text] [Related]
19. Engineering the Electronic Structures of Metal-Organic Framework Nanosheets via Synergistic Doping of Metal Ions and Counteranions for Efficient Water Oxidation. Zhao ZY; Sun X; Gu H; Niu Z; Braunstein P; Lang JP ACS Appl Mater Interfaces; 2022 Apr; 14(13):15133-15140. PubMed ID: 35324163 [TBL] [Abstract][Full Text] [Related]
20. Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. Fan K; Zou H; Lu Y; Chen H; Li F; Liu J; Sun L; Tong L; Toney MF; Sui M; Yu J ACS Nano; 2018 Dec; 12(12):12369-12379. PubMed ID: 30508382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]