These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37066944)

  • 1. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a protein-ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions.
    Wójcikowski M; Kukiełka M; Stepniewska-Dziubinska MM; Siedlecki P
    Bioinformatics; 2019 Apr; 35(8):1334-1341. PubMed ID: 30202917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning.
    Xie L; Xu L; Kong R; Chang S; Xu X
    Front Pharmacol; 2020; 11():606668. PubMed ID: 33488387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decision tree-based identification of important molecular fragments for protein-ligand binding.
    Li B; Wang Y; Yin Z; Xu L; Xie L; Xu X
    Chem Biol Drug Des; 2024 Jan; 103(1):e14427. PubMed ID: 38230776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints.
    Chupakhin V; Marcou G; Baskin I; Varnek A; Rognan D
    J Chem Inf Model; 2013 Apr; 53(4):763-72. PubMed ID: 23480697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteo-chemometrics interaction fingerprints of protein-ligand complexes predict binding affinity.
    Wang DD; Xie H; Yan H
    Bioinformatics; 2021 Sep; 37(17):2570-2579. PubMed ID: 33650636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep neural network affinity model for BACE inhibitors in D3R Grand Challenge 4.
    Wang B; Ng HL
    J Comput Aided Mol Des; 2020 Feb; 34(2):201-217. PubMed ID: 31916049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simple Representation of Three-Dimensional Molecular Structure.
    Axen SD; Huang XP; Cáceres EL; Gendelev L; Roth BL; Keiser MJ
    J Med Chem; 2017 Sep; 60(17):7393-7409. PubMed ID: 28731335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints.
    Fassio AV; Shub L; Ponzoni L; McKinley J; O'Meara MJ; Ferreira RS; Keiser MJ; de Melo Minardi RC
    J Chem Inf Model; 2022 Sep; 62(18):4300-4318. PubMed ID: 36102784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein-Ligand Binding Affinity Prediction.
    Kyro GW; Brent RI; Batista VS
    J Chem Inf Model; 2023 Apr; 63(7):1947-1960. PubMed ID: 36988912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N; Rognan D
    J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.