These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37066991)

  • 1. Reconstructing the pressure field around swimming fish using a physics-informed neural network.
    Calicchia MA; Mittal R; Seo JH; Ni R
    J Exp Biol; 2023 Apr; 226(8):. PubMed ID: 37066991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body dynamics and hydrodynamics of swimming fish larvae: a computational study.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zebrafish swimming in the flow: a particle image velocimetry study.
    Mwaffo V; Zhang P; Romero Cruz S; Porfiri M
    PeerJ; 2017; 5():e4041. PubMed ID: 29158978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on aortic hemodynamics based on physics-informed neural network.
    Du M; Zhang C; Xie S; Pu F; Zhang D; Li D
    Math Biosci Eng; 2023 May; 20(7):11545-11567. PubMed ID: 37501408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing the strike of a predator fish depends on the specific gravity of a prey fish.
    Stewart WJ; McHenry MJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3769-77. PubMed ID: 21037055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-informed neural networks to solve lumped kinetic model for chromatography process.
    Tang SY; Yuan YH; Chen YC; Yao SJ; Wang Y; Lin DQ
    J Chromatogr A; 2023 Oct; 1708():464346. PubMed ID: 37716084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-informed neural networks for hydraulic transient analysis in pipeline systems.
    Ye J; Do NC; Zeng W; Lambert M
    Water Res; 2022 Aug; 221():118828. PubMed ID: 35841787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escape trajectories are deflected when fish larvae intercept their own C-start wake.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J R Soc Interface; 2014 Dec; 11(101):20140848. PubMed ID: 25401174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-informed neural networks for high-resolution weather reconstruction from sparse weather stations.
    Moreno Soto Á; Cervantes A; Soler M
    Open Res Eur; 2024; 4():99. PubMed ID: 39119018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental-numerical method for calculating bending moments in swimming fish shows that fish larvae control undulatory swimming with simple actuation.
    Voesenek CJ; Li G; Muijres FT; van Leeuwen JL
    PLoS Biol; 2020 Jul; 18(7):e3000462. PubMed ID: 32697779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Denoising and Super-Resolution of Vascular Flow Data by Physics-Informed Machine Learning.
    Sautory T; Shadden SC
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38529728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How zebrafish turn: analysis of pressure force dynamics and mechanical work.
    Thandiackal R; Lauder GV
    J Exp Biol; 2020 Aug; 223(Pt 16):. PubMed ID: 32616548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mexican blind cavefish use mouth suction to detect obstacles.
    Holzman R; Perkol-Finkel S; Zilman G
    J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing transient pressures in pipe networks from local observations by using physics-informed neural networks.
    Ye J; Zeng W; Do NC; Lambert M
    Water Res; 2024 Jun; 257():121648. PubMed ID: 38663215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the lateral line in active drag reduction by clupeoid fishes.
    Lighthill J
    Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated visual tracking for studying the ontogeny of zebrafish swimming.
    Fontaine E; Lentink D; Kranenbarg S; Müller UK; van Leeuwen JL; Barr AH; Burdick JW
    J Exp Biol; 2008 Apr; 211(Pt 8):1305-16. PubMed ID: 18375855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey.
    Gemmell BJ; Adhikari D; Longmire EK
    J R Soc Interface; 2014 Jan; 11(90):20130880. PubMed ID: 24227312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries.
    Borrel-Jensen N; Engsig-Karup AP; Jeong CH
    JASA Express Lett; 2021 Dec; 1(12):122402. PubMed ID: 36154380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.