These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37067277)

  • 1. Recording Brain Activity with Ear-Electroencephalography.
    Hölle D; Bleichner MG
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37067277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep EEG Derived From Behind-the-Ear Electrodes (cEEGrid) Compared to Standard Polysomnography: A Proof of Concept Study.
    Sterr A; Ebajemito JK; Mikkelsen KB; Bonmati-Carrion MA; Santhi N; Della Monica C; Grainger L; Atzori G; Revell V; Debener S; Dijk DJ; DeVos M
    Front Hum Neurosci; 2018; 12():452. PubMed ID: 30534063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes.
    Van Den Broucke A; Van Kerrebrouck J; Van Ransbeeck W; Pynckels R; Frater A; Torfs G; Verhulst S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ear-EEG compares well to cap-EEG in recording auditory ERPs: a quantification of signal loss.
    Meiser A; Bleichner MG
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35316801
    [No Abstract]   [Full Text] [Related]  

  • 6. Flex-Printed Ear-EEG Sensors for Adequate Sleep Staging at Home.
    da Silva Souto CF; Pätzold W; Wolf KI; Paul M; Matthiesen I; Bleichner MG; Debener S
    Front Digit Health; 2021; 3():688122. PubMed ID: 34713159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-Related Potentials Measured From In and Around the Ear Electrodes Integrated in a Live Hearing Device for Monitoring Sound Perception.
    Denk F; Grzybowski M; Ernst SMA; Kollmeier B; Debener S; Bleichner MG
    Trends Hear; 2018; 22():2331216518788219. PubMed ID: 30022733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical tips: verification of accurate placement and labeling of 10-10 scalp electrodes and intracranial grid/strip electrodes using documentation tools.
    Feravich SM; Keller CM
    Neurodiagn J; 2012 Jun; 52(2):204-15. PubMed ID: 22808753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear.
    Debener S; Emkes R; De Vos M; Bleichner M
    Sci Rep; 2015 Nov; 5():16743. PubMed ID: 26572314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Wearables: Validation Toolkit for Ear-Level EEG Sensors.
    Correia G; Crosse MJ; Lopez Valdes A
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of electrode placement upon EEG biofeedback training: the monopolar-bipolar controversy.
    Fehmi LG; Sundor A
    Int J Psychosom; 1989; 36(1-4):23-33. PubMed ID: 2599783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.
    Black C; Voigts J; Agrawal U; Ladow M; Santoyo J; Moore C; Jones S
    J Neural Eng; 2017 Jun; 14(3):035002. PubMed ID: 28266930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of impedance spectra for dry and wet EarEEG electrodes.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3161-4. PubMed ID: 26736963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating social cognition in infants and adults using dense array electroencephalography ((d)EEG).
    Akano AJ; Haley DW; Dudek J
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21730950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings.
    Knierim MT; Bleichner MG; Reali P
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG.
    Bleichner MG; Debener S
    Front Hum Neurosci; 2017; 11():163. PubMed ID: 28439233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Custom-Fitted In- and Around-the-Ear Sensors for Unobtrusive and On-the-Go EEG Acquisitions: Development and Validation.
    Valentin O; Viallet G; Delnavaz A; Cretot-Richert G; Ducharme M; Monsarat-Chanon H; Voix J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplification and transmission of the EEG.
    Kamp A
    Electroencephalogr Clin Neurophysiol Suppl; 1985; 37():27-60. PubMed ID: 3859405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory evoked responses from Ear-EEG recordings.
    Kidmose P; Looney D; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():586-9. PubMed ID: 23365960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in-the-ear recording concept: user-centered and wearable brain monitoring.
    Looney D; Kidmose P; Park C; Ungstrup M; Rank M; Rosenkranz K; Mandic D
    IEEE Pulse; 2012; 3(6):32-42. PubMed ID: 23247157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.