These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37067415)

  • 1. Enhanced Sampling for Free Energy Profiles with Post-Transition-State Bifurcations.
    Nam J; Jung Y
    J Chem Theory Comput; 2023 May; 19(10):2735-2743. PubMed ID: 37067415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of water and enzyme SpnF on the dynamics and energetics of the ambimodal [6+4]/[4+2] cycloaddition.
    Yang Z; Yang S; Yu P; Li Y; Doubleday C; Park J; Patel A; Jeon BS; Russell WK; Liu HW; Russell DH; Houk KN
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E848-E855. PubMed ID: 29348209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning.
    Bučko T; Gešvandtnerová M; Rocca D
    J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Insights into an Enzyme-Catalyzed [4+2] Cycloaddition.
    Zheng Y; Thiel W
    J Org Chem; 2017 Dec; 82(24):13563-13571. PubMed ID: 29131960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the [4 + 2]- and [5 + 4]-cycloaddition reactions in zig-zag carbon nanotubes
    Sangolkar AA; Pawar R
    RSC Adv; 2020 Mar; 10(19):11111-11120. PubMed ID: 35495313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics.
    Awasthi S; Kapil V; Nair NN
    J Comput Chem; 2016 Jun; 37(16):1413-24. PubMed ID: 27059305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Diels-Alder Energies and
    Velez C; Doherty B; Acevedo O
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32054023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Density Functional Theory Study of Secondary Orbital Overlap in Endo Cycloaddition Reactions. An Example of a Diels-Alder Reaction between Butadiene and Cyclopropene.
    Jursic BS
    J Org Chem; 1997 May; 62(10):3046-3048. PubMed ID: 11671683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of free energy surfaces calculations from ab initio molecular dynamic simulations at the example of two transition metal catalyzed reactions.
    Brüssel M; di Dio PJ; Muñiz K; Kirchner B
    Int J Mol Sci; 2011 Feb; 12(2):1389-409. PubMed ID: 21541065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Computation of Free Energy Surfaces of Diels⁻Alder Reactions in Explicit Solvent at Ab Initio QM/MM Level.
    Li P; Liu F; Jia X; Shao Y; Hu W; Zheng J; Mei Y
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30274188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab Initio Molecular Dynamics Simulations of the S
    Fu Y; Bernasconi L; Liu P
    J Am Chem Soc; 2021 Jan; 143(3):1577-1589. PubMed ID: 33439656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Insights into Endo/Exo Selectivity of the Diels-Alder Reaction in Explicit Solvent at Ab Initio Quantum Mechanical/Molecular Mechanical Level.
    Li P; Liu F; Shao Y; Mei Y
    J Phys Chem B; 2019 Jun; 123(24):5131-5138. PubMed ID: 31140808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Sampling Simulation Reveals How Solvent Influences Chirogenesis of the Intra-Molecular Diels-Alder Reaction.
    Han X; Zhang J; Yang YI; Zhang Z; Yang L; Gao YQ
    J Chem Theory Comput; 2022 Jul; 18(7):4318-4326. PubMed ID: 35666128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming Free-Energy Barriers with a Seamless Combination of a Biasing Force and a Collective Variable-Independent Boost Potential.
    Chen H; Fu H; Chipot C; Shao X; Cai W
    J Chem Theory Comput; 2021 Jul; 17(7):3886-3894. PubMed ID: 34106706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient computation of free energy surfaces of chemical reactions using ab initio molecular dynamics with hybrid functionals and plane waves.
    Mandal S; Nair NN
    J Comput Chem; 2020 Jul; 41(19):1790-1797. PubMed ID: 32407582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight on the Diels-Alder reaction catalyzed by a self-assembled molecular capsule.
    Xu L; Hua W; Hua S; Li J; Li S
    J Org Chem; 2013 Apr; 78(8):3577-82. PubMed ID: 23541181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study.
    Sun G; Jiang H
    J Chem Phys; 2015 Dec; 143(23):234706. PubMed ID: 26696069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.