These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37067478)

  • 1. Switching ultra-stretchability and sensitivity in metal films for electronic skins: a pufferfish-inspired, interlayer regulation strategy.
    Sun T; Feng B; Huo J; Xiao Y; Peng J; Li Z; Wang W; Liu L; Zou G; Wang W
    Mater Horiz; 2023 Jul; 10(7):2525-2534. PubMed ID: 37067478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Venation-Mimicking, Ultrastretchable, Room-Temperature-Attachable Metal Tapes for Integrated Electronic Skins.
    Feng B; Sun T; Wang W; Xiao Y; Huo J; Deng Z; Bian G; Wu Y; Zou G; Wang W; Ren T; Liu L
    Adv Mater; 2023 Feb; 35(8):e2208568. PubMed ID: 36482821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-Interface Engineering of Carbon Nanotube/Elastomers with Enhanced Sensitivity for Stretchable Strain Sensors.
    Chen S; Wu R; Li P; Li Q; Gao Y; Qian B; Xuan F
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37760-37766. PubMed ID: 30284440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability.
    Cheng T; Zhang Y; Lai WY; Huang W
    Adv Mater; 2015 Jun; 27(22):3349-76. PubMed ID: 25920067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors.
    Kim HJ; Sim K; Thukral A; Yu C
    Sci Adv; 2017 Sep; 3(9):e1701114. PubMed ID: 28913428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacing liquid metals with stretchable metal conductors.
    Kim B; Jang J; You I; Park J; Shin S; Jeon G; Kim JK; Jeong U
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7920-6. PubMed ID: 25835190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in electronic skins: material progress and applications.
    Cao HL; Cai SQ
    Front Bioeng Biotechnol; 2022; 10():1083579. PubMed ID: 36588929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Fabrication of Ultra-Stretchable Metallic Nanocluster Films for Wearable Electronics.
    Venugopalan V; Lamboll R; Joshi D; Narayan KS
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28010-28018. PubMed ID: 28703571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced stretchability of metal/interlayer/metal hybrid electrode.
    Han S; Seo KW; Kim W; Kim TS; Lee JY
    Nanoscale; 2021 Mar; 13(8):4543-4550. PubMed ID: 33599649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kirigami-Inspired Highly Stretchable, Conductive, and Hierarchical Ti
    Chen W; Liu LX; Zhang HB; Yu ZZ
    ACS Nano; 2021 Apr; 15(4):7668-7681. PubMed ID: 33861590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-Programmable Liquid Metal Fibers.
    Ma B; Zhang J; Chen G; Chen Y; Xu C; Lei L; Liu H
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring.
    Du Y; Yu G; Dai X; Wang X; Yao B; Kong J
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51987-51998. PubMed ID: 33142058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological Gradients for Metal Film-Based Strain Sensors.
    Zhu T; Wu K; Xia Y; Yang C; Chen J; Wang Y; Zhang J; Pu X; Liu G; Sun J
    Nano Lett; 2022 Aug; 22(16):6637-6646. PubMed ID: 35931465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features.
    Zhao S; Li J; Cao D; Zhang G; Li J; Li K; Yang Y; Wang W; Jin Y; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12147-12164. PubMed ID: 28281337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material approaches to stretchable strain sensors.
    Park J; You I; Shin S; Jeong U
    Chemphyschem; 2015 Apr; 16(6):1155-63. PubMed ID: 25641620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.
    Yu Y; Luo S; Sun L; Wu Y; Jiang K; Li Q; Wang J; Fan S
    Nanoscale; 2015 Jun; 7(22):10178-85. PubMed ID: 25985762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.