These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3706775)

  • 1. Naturally occurring and induced ganglion cell death. A retinal whole-mount autoradiographic study in Xenopus.
    Jenkins S; Straznicky C
    Anat Embryol (Berl); 1986; 174(1):59-66. PubMed ID: 3706775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):920-9. PubMed ID: 2984359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The changing distribution of neurons in the inner nuclear layer from metamorphosis to adult: a morphometric analysis of the anuran retina.
    Zhu BS; Hiscock J; Straznicky C
    Anat Embryol (Berl); 1990; 181(6):585-94. PubMed ID: 2118741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target dependence of chick retinal ganglion cells during embryogenesis: cell survival and dendritic development.
    Vanselow J; Dütting D; Thanos S
    J Comp Neurol; 1990 May; 295(2):235-47. PubMed ID: 2358515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-metamorphic retinal growth in Xenopus.
    Straznicky C; Hiscock J
    Anat Embryol (Berl); 1984; 169(1):103-9. PubMed ID: 6721217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular migration and the metamorphic and postmetamorphic maturation of the retinotectal system in Xenopus laevis: an autoradiographic and morphometric study.
    Grant S; Keating MJ
    J Embryol Exp Morphol; 1986 Mar; 92():43-69. PubMed ID: 3723067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and the topographic organization of the retinal ganglion cell layer in Bufo marinus.
    Nguyen VS; Straznicky C
    Exp Brain Res; 1989; 75(2):345-53. PubMed ID: 2498114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells in the retina of developing Xenopus laevis.
    Zhu BS; Straznicky C
    Anat Embryol (Berl); 1991; 184(1):33-45. PubMed ID: 1681761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus.
    Carpenter P; Sefton AJ; Dreher B; Lim WL
    J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell generation, death, and retinal growth in the development of the hamster retinal ganglion cell layer.
    Sengelaub DR; Dolan RP; Finlay BL
    J Comp Neurol; 1986 Apr; 246(4):527-43. PubMed ID: 3700727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporo-nasal asymmetry in the accretion of retinal ganglion cells in late larval and postmetamorphic Xenopus.
    Tay D; Hiscock J; Straznicky C
    Anat Embryol (Berl); 1982; 164(1):75-83. PubMed ID: 7114490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss and displacement of ganglion cells after optic nerve regeneration in adult Rana pipiens.
    Scalia F; Arango V; Singman EL
    Brain Res; 1985 Oct; 344(2):267-80. PubMed ID: 3876140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic retinal neurogenesis in the brush-tailed possum, Trichosurus vulpecula: further evidence for the mechanisms involved in formation of ganglion cell density gradients.
    Harman AM; Sanderson KJ; Beazley LD
    J Comp Neurol; 1992 Nov; 325(4):595-606. PubMed ID: 1469115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of cell division during visual streak formation in the frog Limnodynastes dorsalis.
    Coleman LA; Dunlop SA; Beazley LD
    J Embryol Exp Morphol; 1984 Oct; 83():119-35. PubMed ID: 6502071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurogenesis in the retinal ganglion cell layer of the rat.
    Reese BE; Colello RJ
    Neuroscience; 1992; 46(2):419-29. PubMed ID: 1542415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal density in the human retinal ganglion cell layer from 16-77 years.
    Harman A; Abrahams B; Moore S; Hoskins R
    Anat Rec; 2000 Oct; 260(2):124-31. PubMed ID: 10993949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cell death in the topogenesis of neuronal distributions in the developing cat retinal ganglion cell layer.
    Wong RO; Hughes A
    J Comp Neurol; 1987 Aug; 262(4):496-511. PubMed ID: 3667961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal ganglion cell death is not prevented by application of tetrodotoxin during optic nerve regeneration in the frog Hyla moorei.
    Sheard PW; Beazley LD
    Vision Res; 1988; 28(4):461-70. PubMed ID: 2461612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.