BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37067922)

  • 1. Single-Cell Spatial Analysis Identifies Regulators of Brain Tumor-Initiating Cells.
    Mirzaei R; D'Mello C; Liu M; Nikolic A; Kumar M; Visser F; Bose P; Gallo M; Yong VW
    Cancer Res; 2023 May; 83(10):1725-1741. PubMed ID: 37067922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells.
    Dzikowski L; Mirzaei R; Sarkar S; Kumar M; Bose P; Bellail A; Hao C; Yong VW
    Brain Pathol; 2021 Sep; 31(5):e12947. PubMed ID: 33694259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casein kinase 2α regulates glioblastoma brain tumor-initiating cell growth through the β-catenin pathway.
    Nitta RT; Gholamin S; Feroze AH; Agarwal M; Cheshier SH; Mitra SS; Li G
    Oncogene; 2015 Jul; 34(28):3688-99. PubMed ID: 25241897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors.
    Davis B; Shen Y; Poon CC; Luchman HA; Stechishin OD; Pontifex CS; Wu W; Kelly JJ; Blough MD;
    Neuro Oncol; 2016 Mar; 18(3):350-60. PubMed ID: 26245525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments.
    Shen Y; Grisdale CJ; Islam SA; Bose P; Lever J; Zhao EY; Grinshtein N; Ma Y; Mungall AJ; Moore RA; Lun X; Senger DL; Robbins SM; Wang AY; MacIsaac JL; Kobor MS; Luchman HA; Weiss S; Chan JA; Blough MD; Kaplan DR; Cairncross JG; Marra MA; Jones SJM
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19098-19108. PubMed ID: 31471491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.
    Meng Q; Zhang Y; Li G; Li Y; Xie H; Chen X
    J Cancer Res Clin Oncol; 2021 Jul; 147(7):1881-1895. PubMed ID: 33693962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioblastoma-educated mesenchymal stem-like cells promote glioblastoma infiltration via extracellular matrix remodelling in the tumour microenvironment.
    Kim SM; Lim EJ; Yoo KC; Zhao Y; Kang JH; Lim EJ; Shin I; Kang SG; Lim HW; Lee SJ
    Clin Transl Med; 2022 Aug; 12(8):e997. PubMed ID: 35908277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan.
    Berendsen AD; Fisher LW; Kilts TM; Owens RT; Robey PG; Gutkind JS; Young MF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17022-7. PubMed ID: 21969569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway.
    Liu Q; Guan Y; Li Z; Wang Y; Liu Y; Cui R; Wang Y
    J Exp Clin Cancer Res; 2019 Aug; 38(1):358. PubMed ID: 31419987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration analysis of single-cell and spatial transcriptomics reveal the cellular heterogeneity landscape in glioblastoma and establish a polygenic risk model.
    Liu Y; Wu Z; Feng Y; Gao J; Wang B; Lian C; Diao B
    Front Oncol; 2023; 13():1109037. PubMed ID: 37397378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells.
    Vora P; Seyfrid M; Venugopal C; Qazi MA; Salim S; Isserlin R; Subapanditha M; O'Farrell E; Mahendram S; Singh M; Bakhshinyan D; Chokshi C; McFarlane N; Dvorkin-Gheva A; Brown KR; Murty N; Moffat J; Bader GD; Singh SK
    J Neurooncol; 2019 Jul; 143(3):417-428. PubMed ID: 31115870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na⁺/K⁺-ATPase β2-subunit (AMOG) expression abrogates invasion of glioblastoma-derived brain tumor-initiating cells.
    Sun MZ; Kim JM; Oh MC; Safaee M; Kaur G; Clark AJ; Bloch O; Ivan ME; Kaur R; Oh T; Fouse SD; Phillips JJ; Berger MS; Parsa AT
    Neuro Oncol; 2013 Nov; 15(11):1518-31. PubMed ID: 23887941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Zooming in" on Glioblastoma: Understanding Tumor Heterogeneity and its Clinical Implications in the Era of Single-Cell Ribonucleic Acid Sequencing.
    Khalafallah AM; Huq S; Jimenez AE; Serra R; Bettegowda C; Mukherjee D
    Neurosurgery; 2021 Feb; 88(3):477-486. PubMed ID: 32674143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin.
    Zemp FJ; Lun X; McKenzie BA; Zhou H; Maxwell L; Sun B; Kelly JJ; Stechishin O; Luchman A; Weiss S; Cairncross JG; Hamilton MG; Rabinovich BA; Rahman MM; Mohamed MR; Smallwood S; Senger DL; Bell J; McFadden G; Forsyth PA
    Neuro Oncol; 2013 Jul; 15(7):904-20. PubMed ID: 23585629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma Subtypes.
    Cusulin C; Chesnelong C; Bose P; Bilenky M; Kopciuk K; Chan JA; Cairncross JG; Jones SJ; Marra MA; Luchman HA; Weiss S
    Stem Cell Reports; 2015 Jul; 5(1):1-9. PubMed ID: 26095605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial transcriptomics reveals segregation of tumor cell states in glioblastoma and marked immunosuppression within the perinecrotic niche.
    Liu M; Ji Z; Jain V; Smith VL; Hocke E; Patel AP; McLendon RE; Ashley DM; Gregory SG; López GY
    Acta Neuropathol Commun; 2024 Apr; 12(1):64. PubMed ID: 38650010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondroitin sulfate content and decorin expression in glioblastoma are associated with proliferative activity of glioma cells and disease prognosis.
    Tsidulko AY; Kazanskaya GM; Volkov AM; Suhovskih AV; Kiselev RS; Kobozev VV; Gaytan AS; Krivoshapkin AL; Aidagulova SV; Grigorieva EV
    Cell Tissue Res; 2020 Jan; 379(1):147-155. PubMed ID: 31773303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling.
    García-Montaño LA; Licón-Muñoz Y; Martinez FJ; Keddari YR; Ziemke MK; Chohan MO; Piccirillo SGM
    Mol Cancer Res; 2023 Aug; 21(8):755-767. PubMed ID: 37255362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective.
    Mathur R; Wang Q; Schupp PG; Nikolic A; Hilz S; Hong C; Grishanina NR; Kwok D; Stevers NO; Jin Q; Youngblood MW; Stasiak LA; Hou Y; Wang J; Yamaguchi TN; Lafontaine M; Shai A; Smirnov IV; Solomon DA; Chang SM; Hervey-Jumper SL; Berger MS; Lupo JM; Okada H; Phillips JJ; Boutros PC; Gallo M; Oldham MC; Yue F; Costello JF
    Cell; 2024 Jan; 187(2):446-463.e16. PubMed ID: 38242087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.
    Clark PA; Bhattacharya S; Elmayan A; Darjatmoko SR; Thuro BA; Yan MB; van Ginkel PR; Polans AS; Kuo JS
    J Neurosurg; 2017 May; 126(5):1448-1460. PubMed ID: 27419830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.