These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37068044)

  • 1. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning.
    Ahalawat N; Sahil M; Mondal J
    J Chem Theory Comput; 2023 May; 19(9):2644-2657. PubMed ID: 37068044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics.
    Brueckner AC; Shields B; Kirubakaran P; Suponya A; Panda M; Posy SL; Johnson S; Lakkaraju SK
    J Comput Aided Mol Des; 2024 Jul; 38(1):24. PubMed ID: 39014286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Substrate Recognition Pathway in Cytochrome P450.
    Ahalawat N; Mondal J
    J Am Chem Soc; 2018 Dec; 140(50):17743-17752. PubMed ID: 30479124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics.
    Schultze S; Grubmüller H
    J Chem Theory Comput; 2021 Sep; 17(9):5766-5776. PubMed ID: 34449229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconciling conformational heterogeneity and substrate recognition in cytochrome P450.
    Dandekar BR; Ahalawat N; Mondal J
    Biophys J; 2021 May; 120(9):1732-1745. PubMed ID: 33675756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches.
    Motta S; Bonati L
    J Chem Inf Model; 2017 Jul; 57(7):1563-1578. PubMed ID: 28616990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep encoder-decoder framework for identifying distinct ligand binding pathways.
    Bandyopadhyay S; Mondal J
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random Forest Refinement of Pairwise Potentials for Protein-Ligand Decoy Detection.
    Pei J; Zheng Z; Kim H; Song LF; Walworth S; Merz MR; Merz KM
    J Chem Inf Model; 2019 Jul; 59(7):3305-3315. PubMed ID: 31264420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent's Role in Cavity-Ligand Recognition Would Depend on the Mode of Ligand Diffusion.
    Bandyopadhyay S; Majumdar BB; Mondal J
    J Phys Chem B; 2022 Apr; 126(16):2952-2958. PubMed ID: 35436126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting residue cooperativity during protein folding: A combined, molecular dynamics and unsupervised learning approach.
    Prabhakar PR; Ray D; Andricioaei I
    J Chem Phys; 2023 Apr; 158(13):134108. PubMed ID: 37031148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Binding Free Energy Method from End-State MD Simulations.
    Akkus E; Tayfuroglu O; Yildiz M; Kocak A
    J Chem Inf Model; 2022 Sep; 62(17):4095-4106. PubMed ID: 35972783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction.
    Dong J; Wang S; Cui W; Sun X; Guo H; Yan H; Vogel H; Wang Z; Yuan S
    J Chem Theory Comput; 2024 Jun; 20(11):4499-4513. PubMed ID: 38394691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling Switching Function of Amino Acids in Proteins Using a Machine Learning Approach.
    Mollaei P; Barati Farimani A
    J Chem Theory Comput; 2023 Nov; 19(22):8472-8480. PubMed ID: 37933128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam.
    Basom EJ; Manifold BA; Thielges MC
    Biochemistry; 2017 Jun; 56(25):3248-3256. PubMed ID: 28581729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection.
    Pei J; Song LF; Merz KM
    J Chem Theory Comput; 2021 Oct; 17(10):6647-6657. PubMed ID: 34553938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?
    Gu S; Shen C; Yu J; Zhao H; Liu H; Liu L; Sheng R; Xu L; Wang Z; Hou T; Kang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36681903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble.
    Audagnotto M; Czechtizky W; De Maria L; Käck H; Papoian G; Tornberg L; Tyrchan C; Ulander J
    Sci Rep; 2022 Jun; 12(1):10018. PubMed ID: 35705565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.