These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37068044)

  • 21. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
    Bohnuud T; Kozakov D; Vajda S
    PLoS Comput Biol; 2014 Oct; 10(10):e1003872. PubMed ID: 25275445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories.
    Kokh DB; Doser B; Richter S; Ormersbach F; Cheng X; Wade RC
    J Chem Phys; 2020 Sep; 153(12):125102. PubMed ID: 33003755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning.
    Xiao J; Melvin RL; Salsbury FR
    J Biomol Struct Dyn; 2019 Mar; 37(4):982-999. PubMed ID: 29471734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis.
    Naritomi Y; Fuchigami S
    J Chem Phys; 2013 Dec; 139(21):215102. PubMed ID: 24320404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2016 May; 24(10):2159-89. PubMed ID: 27061672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics-Markov State Model of Protein Ligand Binding and Allostery in CRIB-PDZ: Conformational Selection and Induced Fit.
    Thayer KM; Lakhani B; Beveridge DL
    J Phys Chem B; 2017 Jun; 121(22):5509-5514. PubMed ID: 28489401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Big Data Analytics to "Back Engineer" Protein Conformational Selection Mechanisms.
    Gupta S; Baudry J; Menon V
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand-Dependent Conformational Transitions in Molecular Dynamics Trajectories of GPCRs Revealed by a New Machine Learning Rare Event Detection Protocol.
    Plante A; Weinstein H
    Molecules; 2021 May; 26(10):. PubMed ID: 34065494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations.
    Cuzzolin A; Sturlese M; Deganutti G; Salmaso V; Sabbadin D; Ciancetta A; Moro S
    J Chem Inf Model; 2016 Apr; 56(4):687-705. PubMed ID: 27019343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. evERdock BAI: Machine-learning-guided selection of protein-protein complex structure.
    Terayama K; Shinobu A; Tsuda K; Takemura K; Kitao A
    J Chem Phys; 2019 Dec; 151(21):215104. PubMed ID: 31822094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling.
    Liu W; Liu Z; Liu H; Westerhoff LM; Zheng Z
    J Chem Inf Model; 2022 Nov; 62(22):5645-5665. PubMed ID: 36282990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem.
    Mohammadi S; Narimani Z; Ashouri M; Firouzi R; Karimi-Jafari MH
    Sci Rep; 2022 Jan; 12(1):410. PubMed ID: 35013496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking.
    Smith GR; Sternberg MJ; Bates PA
    J Mol Biol; 2005 Apr; 347(5):1077-101. PubMed ID: 15784265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNAPosers: Machine Learning Classifiers for Ribonucleic Acid-Ligand Poses.
    Chhabra S; Xie J; Frank AT
    J Phys Chem B; 2020 Jun; 124(22):4436-4445. PubMed ID: 32427491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How Effectively Can Adaptive Sampling Methods Capture Spontaneous Ligand Binding?
    Betz RM; Dror RO
    J Chem Theory Comput; 2019 Mar; 15(3):2053-2063. PubMed ID: 30645108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.