BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37068239)

  • 1. TapA acts as specific chaperone in TasA filament formation by strand complementation.
    Roske Y; Lindemann F; Diehl A; Cremer N; Higman VA; Schlegel B; Leidert M; Driller K; Turgay K; Schmieder P; Heinemann U; Oschkinat H
    Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2217070120. PubMed ID: 37068239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The majority of the matrix protein TapA is dispensable for Bacillus subtilis colony biofilm architecture.
    Earl C; Arnaouteli S; Bamford NC; Porter M; Sukhodub T; MacPhee CE; Stanley-Wall NR
    Mol Microbiol; 2020 Dec; 114(6):920-933. PubMed ID: 32491277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly.
    Romero D; Vlamakis H; Losick R; Kolter R
    J Bacteriol; 2014 Apr; 196(8):1505-13. PubMed ID: 24488317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms.
    Böhning J; Ghrayeb M; Pedebos C; Abbas DK; Khalid S; Chai L; Bharat TAM
    Nat Commun; 2022 Nov; 13(1):7082. PubMed ID: 36400765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes of TasA in biofilm formation of
    Diehl A; Roske Y; Ball L; Chowdhury A; Hiller M; Molière N; Kramer R; Stöppler D; Worth CL; Schlegel B; Leidert M; Cremer N; Erdmann N; Lopez D; Stephanowitz H; Krause E; van Rossum BJ; Schmieder P; Heinemann U; Turgay K; Akbey Ü; Oschkinat H
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3237-3242. PubMed ID: 29531041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Bacterial Extracellular Matrix Protein TapA Is a Two-Domain Partially Disordered Protein.
    Abbasi R; Mousa R; Dekel N; Amartely H; Danieli T; Lebendiker M; Levi-Kalisman Y; Shalev DE; Metanis N; Chai L
    Chembiochem; 2019 Feb; 20(3):355-359. PubMed ID: 30371005
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Morris RJ; Bamford NC; Bromley KM; Erskine E; Stanley-Wall NR; MacPhee CE
    Langmuir; 2024 Feb; 40(8):4164-4173. PubMed ID: 38351711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis.
    Driks A
    Mol Microbiol; 2011 Jun; 80(5):1133-6. PubMed ID: 21488983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of bacterial amyloids in
    El Mammeri N; Hierrezuelo J; Tolchard J; Cámara-Almirón J; Caro-Astorga J; Álvarez-Mena A; Dutour A; Berbon M; Shenoy J; Morvan E; Grélard A; Kauffmann B; Lecomte S; de Vicente A; Habenstein B; Romero D; Loquet A
    FASEB J; 2019 Nov; 33(11):12146-12163. PubMed ID: 31370706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis.
    Kantiwal U; Pandey J
    Appl Biochem Biotechnol; 2023 Mar; 195(3):1947-1967. PubMed ID: 36401726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA.
    Erskine E; Morris RJ; Schor M; Earl C; Gillespie RMC; Bromley KM; Sukhodub T; Clark L; Fyfe PK; Serpell LC; Stanley-Wall NR; MacPhee CE
    Mol Microbiol; 2018 Dec; 110(6):897-913. PubMed ID: 29802781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational investigation for modeling the protein-protein interaction of TasA
    Verma N; Srivastava S; Malik R; Yadav JK; Goyal P; Pandey J
    J Mol Model; 2020 Aug; 26(9):226. PubMed ID: 32779018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.
    Romero D; Vlamakis H; Losick R; Kolter R
    Mol Microbiol; 2011 Jun; 80(5):1155-68. PubMed ID: 21477127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.
    Gallegos-Monterrosa R; Kankel S; Götze S; Barnett R; Stallforth P; Kovács ÁT
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28583948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A major protein component of the Bacillus subtilis biofilm matrix.
    Branda SS; Chu F; Kearns DB; Losick R; Kolter R
    Mol Microbiol; 2006 Feb; 59(4):1229-38. PubMed ID: 16430696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.
    Lei Y; Oshima T; Ogasawara N; Ishikawa S
    J Bacteriol; 2013 Apr; 195(8):1697-705. PubMed ID: 23378512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the Bacillus subtilis TasA signal peptide leads to cell death in Escherichia coli due to inefficient cleavage by LepB.
    Musik JE; Zalucki YM; Day CJ; Jennings MP
    Biochim Biophys Acta Biomembr; 2021 Dec; 1863(12):183768. PubMed ID: 34492253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Archaeal bundling pili of
    Wang F; Cvirkaite-Krupovic V; Krupovic M; Egelman EH
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2207037119. PubMed ID: 35727984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.
    Vogt CM; Schraner EM; Aguilar C; Eichwald C
    Microb Cell Fact; 2016 Aug; 15(1):137. PubMed ID: 27514610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm.
    Marlow VL; Porter M; Hobley L; Kiley TB; Swedlow JR; Davidson FA; Stanley-Wall NR
    J Bacteriol; 2014 Jan; 196(1):16-27. PubMed ID: 24123822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.