These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37068317)

  • 21. Deep learning-based detection algorithm for brain metastases on black blood imaging.
    Oh JH; Lee KM; Kim HG; Yoon JT; Kim EJ
    Sci Rep; 2022 Nov; 12(1):19503. PubMed ID: 36376364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study.
    Bône A; Ammari S; Menu Y; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Garcia GCTE; Nicolas F; Robert P; Rohé MM; Lassau N
    Invest Radiol; 2022 Aug; 57(8):527-535. PubMed ID: 35446300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of physics-based data augmentation on the generalizability of deep neural networks: Demonstration on nodule false-positive reduction.
    Omigbodun AO; Noo F; McNitt-Gray M; Hsu W; Hsieh SS
    Med Phys; 2019 Oct; 46(10):4563-4574. PubMed ID: 31396974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diagnosis of Brain Tumor Using Light Weight Deep Learning Model with Fine-Tuning Approach.
    Shelatkar T; Urvashi D; Shorfuzzaman M; Alsufyani A; Lakshmanna K
    Comput Math Methods Med; 2022; 2022():2858845. PubMed ID: 35813426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model.
    Pennig L; Shahzad R; Caldeira L; Lennartz S; Thiele F; Goertz L; Zopfs D; Meißner AK; Fürtjes G; Perkuhn M; Kabbasch C; Grau S; Borggrefe J; Laukamp KR
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):655-662. PubMed ID: 33541907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A deep convolutional neural network-based automatic detection of brain metastases with and without blood vessel suppression.
    Kikuchi Y; Togao O; Kikuchi K; Momosaka D; Obara M; Van Cauteren M; Fischer A; Ishigami K; Hiwatashi A
    Eur Radiol; 2022 May; 32(5):2998-3005. PubMed ID: 34993572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-learning 2.5-dimensional single-shot detector improves the performance of automated detection of brain metastases on contrast-enhanced CT.
    Takao H; Amemiya S; Kato S; Yamashita H; Sakamoto N; Abe O
    Neuroradiology; 2022 Aug; 64(8):1511-1518. PubMed ID: 35064786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images.
    Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data.
    Rastogi A; Dutta A; Yalavarthy PK
    Med Phys; 2023 Mar; 50(3):1560-1572. PubMed ID: 36354289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study.
    Sunwoo L; Kim YJ; Choi SH; Kim KG; Kang JH; Kang Y; Bae YJ; Yoo RE; Kim J; Lee KJ; Lee SH; Choi BS; Jung C; Sohn CH; Kim JH
    PLoS One; 2017; 12(6):e0178265. PubMed ID: 28594923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
    Song Y; Zhang YD; Yan X; Liu H; Zhou M; Hu B; Yang G
    J Magn Reson Imaging; 2018 Dec; 48(6):1570-1577. PubMed ID: 29659067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks.
    Iuga AI; Carolus H; Höink AJ; Brosch T; Klinder T; Maintz D; Persigehl T; Baeßler B; Püsken M
    BMC Med Imaging; 2021 Apr; 21(1):69. PubMed ID: 33849483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes.
    Suzuki K; Yoshida H; Näppi J; Dachman AH
    Med Phys; 2006 Oct; 33(10):3814-24. PubMed ID: 17089846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Domain generalization in deep learning for contrast-enhanced imaging.
    Sendra-Balcells C; Campello VM; Martín-Isla C; Viladés D; Descalzo ML; Guala A; Rodríguez-Palomares JF; Lekadir K
    Comput Biol Med; 2022 Oct; 149():106052. PubMed ID: 36055164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine.
    Chou PH; Jou TH; Wu HH; Yao YC; Lin HH; Chang MC; Wang ST; Lu HH; Chen HH
    Spine J; 2022 Apr; 22(4):511-523. PubMed ID: 34737066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Deep Learning-Based Computer Aided Detection (CAD) System for Difficult-to-Detect Brain Metastases.
    Fairchild AT; Salama JK; Wiggins WF; Ackerson BG; Fecci PE; Kirkpatrick JP; Floyd SR; Godfrey DJ
    Int J Radiat Oncol Biol Phys; 2023 Mar; 115(3):779-793. PubMed ID: 36289038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.