These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37068591)

  • 21. Sample-Treatment with the Virucidal β-Propiolactone Does Not Preclude Analysis by Large Panel Affinity Proteomics, Including the Discovery of Biomarker Candidates.
    Beutgen VM; Bhagwat AM; Steitz AM; Reinartz S; Müller R; Graumann J
    Anal Chem; 2024 Jun; 96(23):9332-9342. PubMed ID: 38810147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Examination of the effects of virus inactivation methods on the induction of antibody- and cell-mediated immune responses against whole inactivated H9N2 avian influenza virus vaccines in chickens.
    Astill J; Alkie T; Yitbarek A; Taha-Abdelaziz K; Bavananthasivam J; Nagy É; Petrik JJ; Sharif S
    Vaccine; 2018 Jun; 36(27):3908-3916. PubMed ID: 29853199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative effects of beta-propiolactone on mice, mouse-derived cell cultures, and Venezuelan equine encephalomyelitis virus.
    HEARN HJ; DAWSON FW
    Appl Microbiol; 1961 Jul; 9(4):278-82. PubMed ID: 13712596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of viruses by beta-propiolactone in human cryo poor plasma and IgG concentrates.
    Scheidler A; Rokos K; Reuter T; Ebermann R; Pauli G
    Biologicals; 1998 Jun; 26(2):135-44. PubMed ID: 9811521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scent dog identification of samples from COVID-19 patients - a pilot study.
    Jendrny P; Schulz C; Twele F; Meller S; von Köckritz-Blickwede M; Osterhaus ADME; Ebbers J; Pilchová V; Pink I; Welte T; Manns MP; Fathi A; Ernst C; Addo MM; Schalke E; Volk HA
    BMC Infect Dis; 2020 Jul; 20(1):536. PubMed ID: 32703188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Conditions for SARS-CoV cultivation and inactivation].
    Zhang SL; Ma LJ; Tian G; Zhang LY; Zhang XY; Wang XL
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2005 Jun; 19(2):135-7. PubMed ID: 16027779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization of β-propiolactone inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles.
    Bagrov DV; Glukhov GS; Moiseenko AV; Karlova MG; Litvinov DS; Zaitsev PА; Kozlovskaya LI; Shishova AA; Kovpak AA; Ivin YY; Piniaeva AN; Oksanich AS; Volok VP; Osolodkin DI; Ishmukhametov AA; Egorov AM; Shaitan KV; Kirpichnikov MP; Sokolova OS
    Microsc Res Tech; 2022 Feb; 85(2):562-569. PubMed ID: 34498784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of influenza virus with beta-propiolactone alters viral membrane fusion.
    Bonnafous P; Nicolaï MC; Taveau JC; Chevalier M; Barrière F; Medina J; Le Bihan O; Adam O; Ronzon F; Lambert O
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):355-63. PubMed ID: 24140008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propagation, Inactivation, and Safety Testing of SARS-CoV-2.
    Jureka AS; Silvas JA; Basler CF
    Viruses; 2020 Jun; 12(6):. PubMed ID: 32517266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scent dogs in detection of COVID-19: triple-blinded randomised trial and operational real-life screening in airport setting.
    Kantele A; Paajanen J; Turunen S; Pakkanen SH; Patjas A; Itkonen L; Heiskanen E; Lappalainen M; Desquilbet L; Vapalahti O; Hielm-Björkman A
    BMJ Glob Health; 2022 May; 7(5):. PubMed ID: 35577391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discrimination of SARS-CoV-2 Infections From Other Viral Respiratory Infections by Scent Detection Dogs.
    Ten Hagen NA; Twele F; Meller S; Jendrny P; Schulz C; von Köckritz-Blickwede M; Osterhaus A; Ebbers H; Pink I; Welte T; Manns MP; Illig T; Fathi A; Addo MM; Nitsche A; Puyskens A; Michel J; Krause E; Ehmann R; von Brunn A; Ernst C; Zwirglmaier K; Wölfel R; Nau A; Philipp E; Engels M; Schalke E; Volk HA
    Front Med (Lausanne); 2021; 8():749588. PubMed ID: 34869443
    [No Abstract]   [Full Text] [Related]  

  • 32. Evaluation of stability and inactivation methods of SARS-CoV-2 in context of laboratory settings.
    Widera M; Westhaus S; Rabenau HF; Hoehl S; Bojkova D; Cinatl J; Ciesek S
    Med Microbiol Immunol; 2021 Aug; 210(4):235-244. PubMed ID: 34196781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity.
    Kim YI; Casel MAB; Kim SM; Kim SG; Park SJ; Kim EH; Jeong HW; Poo H; Choi YK
    J Microbiol; 2020 Oct; 58(10):886-891. PubMed ID: 32989642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and reliable inactivation protocols for the diagnostics of emerging viruses: The example of SARS-CoV-2 and monkeypox virus.
    Quéromès G; Frobert E; Bouscambert-Duchamp M; Oblette A; Valette M; Billaud G; Escuret V; Lina B; Morfin F; Gaymard A
    J Med Virol; 2023 Jan; 95(1):e28126. PubMed ID: 36089749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of inactivation procedures for SARS-CoV-2.
    Auerswald H; Yann S; Dul S; In S; Dussart P; Martin NJ; Karlsson EA; Garcia-Rivera JA
    J Gen Virol; 2021 Mar; 102(3):. PubMed ID: 33416462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial.
    Deckert A; Anders S; de Allegri M; Nguyen HT; Souares A; McMahon S; Boerner K; Meurer M; Herbst K; Sand M; Koeppel L; Siems T; Brugnara L; Brenner S; Burk R; Lou D; Kirrmaier D; Duan Y; Ovchinnikova S; Marx M; Kräusslich HG; Knop M; Bärnighausen T; Denkinger C
    Trials; 2021 Jan; 22(1):39. PubMed ID: 33419461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface modifications of influenza proteins upon virus inactivation by β-propiolactone.
    She YM; Cheng K; Farnsworth A; Li X; Cyr TD
    Proteomics; 2013 Dec; 13(23-24):3537-47. PubMed ID: 24123778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources.
    Ma B; Gundy PM; Gerba CP; Sobsey MD; Linden KG
    Appl Environ Microbiol; 2021 Oct; 87(22):e0153221. PubMed ID: 34495736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the SARS-CoV-2 Inactivation Efficacy Associated With Buffers From Three Kits Used on High-Throughput RNA Extraction Platforms.
    Thom RE; Eastaugh LS; O'Brien LM; Ulaeto DO; Findlay JS; Smither SJ; Phelps AL; Stapleton HL; Hamblin KA; Weller SA
    Front Cell Infect Microbiol; 2021; 11():716436. PubMed ID: 34604108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials.
    Gomes MPB; Linhares JHR; Dos Santos TP; Pereira RC; Santos RT; da Silva SA; Souza MCO; da Silva JFA; Trindade GF; Gomes VS; Barreto-Vieira DF; Carvalho MMVF; Ano Bom APD; Gardinali NR; Müller R; Alves NDS; Moura LDC; Neves PCDC; Esteves GS; Schwarcz WD; Missailidis S; Mendes YDS; de Lima SMB
    Viruses; 2023 Jun; 15(7):. PubMed ID: 37515173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.