These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37068722)

  • 1. Putting the electro-bugs to work: A systematic review of 22 years of advances in bio-electrochemical systems and the parameters governing their performance.
    Naderi A; Kakavandi B; Giannakis S; Angelidaki I; Rezaei Kalantary R
    Environ Res; 2023 Jul; 229():115843. PubMed ID: 37068722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in bioelectrochemical systems for bio-products recovery.
    Singh NK; Mathuriya AS; Mehrotra S; Pandit S; Singh A; Jadhav D
    Environ Technol; 2024 Aug; 45(19):3853-3876. PubMed ID: 37491760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment.
    Sayed ET; Shehata N; Abdelkareem MA; Atieh MA
    Sci Total Environ; 2020 Dec; 748():141046. PubMed ID: 32827889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards practical implementation of bioelectrochemical wastewater treatment.
    Rozendal RA; Hamelers HV; Rabaey K; Keller J; Buisman CJ
    Trends Biotechnol; 2008 Aug; 26(8):450-9. PubMed ID: 18585807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes.
    Mier AA; Olvera-Vargas H; Mejía-López M; Longoria A; Verea L; Sebastian PJ; Arias DM
    Chemosphere; 2021 Nov; 283():131138. PubMed ID: 34146871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review.
    Apollon W; Rusyn I; González-Gamboa N; Kuleshova T; Luna-Maldonado AI; Vidales-Contreras JA; Kamaraj SK
    Sci Total Environ; 2022 Apr; 817():153055. PubMed ID: 35032528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial bioelectrochemistry for waste valorization: State of the art and challenges.
    Maureira D; Romero O; Illanes A; Wilson L; Ottone C
    Biotechnol Adv; 2023; 64():108123. PubMed ID: 36868391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive review of microbial electrochemical systems as a platform technology.
    Wang H; Ren ZJ
    Biotechnol Adv; 2013 Dec; 31(8):1796-807. PubMed ID: 24113213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.
    Kitching M; Butler R; Marsili E
    Enzyme Microb Technol; 2017 Jan; 96():1-13. PubMed ID: 27871368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved chromium reduction and removal from wastewater in continuous flow bioelectrochemical systems.
    Gajaraj S; Sun X; Zhang C; Hu Z
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31945-31955. PubMed ID: 31493075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial electrolysis cells for waste biorefinery: A state of the art review.
    Lu L; Ren ZJ
    Bioresour Technol; 2016 Sep; 215():254-264. PubMed ID: 27020129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies.
    Yang E; Omar Mohamed H; Park SG; Obaid M; Al-Qaradawi SY; Castaño P; Chon K; Chae KJ
    Bioresour Technol; 2021 Jan; 320(Pt B):124363. PubMed ID: 33186801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste or Gold? Bioelectrochemical Resource Recovery in Source-Separated Urine.
    Nazari S; Zinatizadeh AA; Mirghorayshi M; van Loosdrecht MCM
    Trends Biotechnol; 2020 Sep; 38(9):990-1006. PubMed ID: 32345461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiently "pumping out" value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives.
    Zou S; He Z
    Water Res; 2018 Mar; 131():62-73. PubMed ID: 29274548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectrochemical systems: an outlook for practical applications.
    Sleutels TH; Ter Heijne A; Buisman CJ; Hamelers HV
    ChemSusChem; 2012 Jun; 5(6):1012-9. PubMed ID: 22674691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.
    Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL
    Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective review on bioelectrochemical systems for wastewater treatment: Achievements, hindrances and role in sustainable environment.
    Varjani S
    Sci Total Environ; 2022 Oct; 841():156691. PubMed ID: 35714749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: A mini review.
    Wang W; Chang JS; Lee DJ
    Bioresour Technol; 2022 Feb; 345():126519. PubMed ID: 34896531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensing capabilities of bioelectrochemical systems towards sustainable water streams: Technological implications and future prospects.
    Sevda S; Garlapati VK; Naha S; Sharma M; Ray SG; Sreekrishnan TR; Goswami P
    J Biosci Bioeng; 2020 Jun; 129(6):647-656. PubMed ID: 32044271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.