BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37068744)

  • 1. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing.
    Hengsteler J; Kanes KA; Khasanova L; Momotenko D
    Annu Rev Anal Chem (Palo Alto Calif); 2023 Jun; 16(1):71-91. PubMed ID: 37068744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bringing Electrochemical Three-Dimensional Printing to the Nanoscale.
    Hengsteler J; Mandal B; van Nisselroy C; Lau GPS; Schlotter T; Zambelli T; Momotenko D
    Nano Lett; 2021 Nov; 21(21):9093-9101. PubMed ID: 34699726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure-driven electrical conductivity optimization in additively manufactured microscale copper interconnects.
    Menétrey M; van Nisselroy C; Xu M; Hengsteler J; Spolenak R; Zambelli T
    RSC Adv; 2023 May; 13(20):13575-13585. PubMed ID: 37152573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive-manufactured (3D-printed) electrochemical sensors: A critical review.
    Cardoso RM; Kalinke C; Rocha RG; Dos Santos PL; Rocha DP; Oliveira PR; Janegitz BC; Bonacin JA; Richter EM; Munoz RAA
    Anal Chim Acta; 2020 Jun; 1118():73-91. PubMed ID: 32418606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Additive Micromodulation of Grain Size in Nanocrystalline Copper Nanostructures by Electrohydrodynamic Redox 3D Printing.
    Menétrey M; Koch L; Sologubenko A; Gerstl S; Spolenak R; Reiser A
    Small; 2022 Dec; 18(51):e2205302. PubMed ID: 36328737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology.
    Gong H; Huang J; Wang J; Zhao P; Guo M; Liang C; Bai D; Jiang Z; Li R
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4222-4230. PubMed ID: 38215444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional scanning ion conductance microscopy.
    Page A; Perry D; Unwin PR
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160889. PubMed ID: 28484332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.
    Zhang B; He J; Li X; Xu F; Li D
    Nanoscale; 2016 Aug; 8(34):15376-88. PubMed ID: 27479715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.
    Reiser A; Lindén M; Rohner P; Marchand A; Galinski H; Sologubenko AS; Wheeler JM; Zenobi R; Poulikakos D; Spolenak R
    Nat Commun; 2019 Apr; 10(1):1853. PubMed ID: 31015443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing for Solid-State Energy Storage.
    Tian X; Xu B
    Small Methods; 2021 Dec; 5(12):e2100877. PubMed ID: 34928040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct In- and Out-of-Plane Writing of Metals on Insulators by Electron-Beam-Enabled, Confined Electrodeposition with Submicrometer Feature Size.
    Nydegger M; Wang ZJ; Willinger MG; Spolenak R; Reiser A
    Small Methods; 2024 Jan; ():e2301247. PubMed ID: 38183406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle assembly enabled by EHD-printed monolayers.
    Porter BF; Mkhize N; Bhaskaran H
    Microsyst Nanoeng; 2017; 3():17054. PubMed ID: 31057880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Experimental Study of the Localized Electrochemical Micro Additive Manufacturing Technology Based on the FluidFM.
    Ren W; Xu J; Lian Z; Yu P; Yu H
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32575589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review.
    Muhindo D; Elkanayati R; Srinivasan P; Repka MA; Ashour EA
    AAPS PharmSciTech; 2023 Feb; 24(2):57. PubMed ID: 36759435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs.
    He J; Zhang B; Li Z; Mao M; Li J; Han K; Li D
    Biofabrication; 2020 Jul; 12(4):042002. PubMed ID: 32615543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of Zn with submicron resolution and its conversion into Zn/ZnO core-shell structures.
    Nydegger M; Pruška A; Galinski H; Zenobi R; Reiser A; Spolenak R
    Nanoscale; 2022 Dec; 14(46):17418-17427. PubMed ID: 36385575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Write-Read 3D Patterning with a Dual-Channel Nanopipette.
    Momotenko D; Page A; Adobes-Vidal M; Unwin PR
    ACS Nano; 2016 Sep; 10(9):8871-8. PubMed ID: 27569272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.