BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37069123)

  • 1. Overcoming Diffusion Limitation of Faradaic Processes: Property-Performance Relationships of 2D Conductive Metal-Organic Framework Cu
    Wrogemann JM; Lüther MJ; Bärmann P; Lounasvuori M; Javed A; Tiemann M; Golnak R; Xiao J; Petit T; Placke T; Winter M
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303111. PubMed ID: 37069123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Collaboration for Exploring Fundamental Property-Performance Relationships for Electrochemical Energy Storage.
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308841. PubMed ID: 37505429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative control over the morphology of Cu
    Snook KM; Zasada LB; Chehada D; Xiao DJ
    Chem Sci; 2022 Sep; 13(35):10472-10478. PubMed ID: 36277645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.
    Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries.
    Nam KW; Park SS; Dos Reis R; Dravid VP; Kim H; Mirkin CA; Stoddart JF
    Nat Commun; 2019 Oct; 10(1):4948. PubMed ID: 31666515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials.
    Koo WT; Kim SJ; Jang JS; Kim DH; Kim ID
    Adv Sci (Weinh); 2019 Nov; 6(21):1900250. PubMed ID: 31728270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal-Organic Framework.
    Eagleton AM; Ko M; Stolz RM; Vereshchuk N; Meng Z; Mendecki L; Levenson AM; Huang C; MacVeagh KC; Mahdavi-Shakib A; Mahle JJ; Peterson GW; Frederick BG; Mirica KA
    J Am Chem Soc; 2022 Dec; 144(51):23297-23312. PubMed ID: 36512516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process.
    Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Triptycene-Based Layered/Flower-Like 2D Conductive Metal-Organic Framework with 3D Extension as an Electrode for Efficient Li Storage.
    Liu X; Yu M; Liu J; Wu S; Gong J
    Small; 2024 Feb; 20(8):e2306159. PubMed ID: 37840442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Carrier Type of a Semiconducting 2D Metal-Organic Framework Cu
    de Lourdes Gonzalez-Juarez M; Morales C; Flege JI; Flores E; Martin-Gonzalez M; Nandhakumar I; Bradshaw D
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12404-12411. PubMed ID: 35230804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the energy storage performances of metal-organic frameworks by controlling microstructure.
    Gittins JW; Balhatchet CJ; Fairclough SM; Forse AC
    Chem Sci; 2022 Aug; 13(32):9210-9219. PubMed ID: 36092998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA.
    Ye RH; Chen JY; Huang DH; Wang YJ; Chen S
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Conductive Two-Dimensional Metal-Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability.
    Wu Z; Adekoya D; Huang X; Kiefel MJ; Xie J; Xu W; Zhang Q; Zhu D; Zhang S
    ACS Nano; 2020 Sep; 14(9):12016-12026. PubMed ID: 32833424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-Up Fabrication of 1D Cu-based Conductive Metal-Organic Framework Nanowires as a High-Rate Anode towards Efficient Lithium Storage.
    Guo L; Sun J; Zhang W; Hou L; Liang L; Liu Y; Yuan C
    ChemSusChem; 2019 Nov; 12(22):5051-5058. PubMed ID: 31596030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity.
    Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pillared-Layer Metal-Organic Frameworks for Improved Lithium-Ion Storage Performance.
    Gong T; Lou X; Gao EQ; Hu B
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21839-21847. PubMed ID: 28613813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilizing Redox-Active Tricycloquinazoline into a 2D Conductive Metal-Organic Framework for Lithium Storage.
    Yan J; Cui Y; Xie M; Yang GZ; Bin DS; Li D
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24467-24472. PubMed ID: 34519413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconducting Cu
    Guo C; Li Z; Duan F; Zhang Z; Marchetti F; Du M
    J Mater Chem B; 2020 Nov; 8(43):9951-9960. PubMed ID: 33034309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two-Dimensional Metal-Organic Frameworks.
    Wang D; Ostresh S; Streater D; He P; Nyakuchena J; Ma Q; Zhang X; Neu J; Brudvig GW; Huang J
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202309505. PubMed ID: 37872121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.