These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S; J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858 [TBL] [Abstract][Full Text] [Related]
4. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Storm FA; Buckley CJ; Mazzà C Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms. Niswander W; Kontson K Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207781 [TBL] [Abstract][Full Text] [Related]
6. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection. Song S; Fernandes NJ; Nordin AD Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002 [TBL] [Abstract][Full Text] [Related]
7. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection. Nazarahari M; Khandan A; Khan A; Rouhani H J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897 [TBL] [Abstract][Full Text] [Related]
8. A multi-sensor wearable system for the assessment of diseased gait in real-world conditions. Salis F; Bertuletti S; Bonci T; Caruso M; Scott K; Alcock L; Buckley E; Gazit E; Hansen C; Schwickert L; Aminian K; Becker C; Brown P; Carsin AE; Caulfield B; Chiari L; D'Ascanio I; Del Din S; Eskofier BM; Garcia-Aymerich J; Hausdorff JM; Hume EC; Kirk C; Kluge F; Koch S; Kuederle A; Maetzler W; Micó-Amigo EM; Mueller A; Neatrour I; Paraschiv-Ionescu A; Palmerini L; Yarnall AJ; Rochester L; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Della Croce U; Mazzà C; Cereatti A; For The Mobilise-D Consortium Front Bioeng Biotechnol; 2023; 11():1143248. PubMed ID: 37214281 [No Abstract] [Full Text] [Related]
9. Detection of Unsupervised Standardized Gait Tests From Real-World Inertial Sensor Data in Parkinson's Disease. Ullrich M; Mucke A; Kuderle A; Roth N; Gladow T; Gabner H; Marxreiter F; Klucken J; Eskofier BM; Kluge F IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2103-2111. PubMed ID: 34633932 [TBL] [Abstract][Full Text] [Related]
10. An Inertial Sensor-Based Gait Analysis Pipeline for the Assessment of Real-World Stair Ambulation Parameters. Roth N; Küderle A; Prossel D; Gassner H; Eskofier BM; Kluge F Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640878 [TBL] [Abstract][Full Text] [Related]
12. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors. Laidig D; Jocham AJ; Guggenberger B; Adamer K; Fischer M; Seel T Front Digit Health; 2021; 3():736418. PubMed ID: 34806077 [TBL] [Abstract][Full Text] [Related]
13. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts. Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266 [TBL] [Abstract][Full Text] [Related]
14. Free-living and laboratory gait characteristics in patients with multiple sclerosis. Storm FA; Nair KPS; Clarke AJ; Van der Meulen JM; Mazzà C PLoS One; 2018; 13(5):e0196463. PubMed ID: 29715279 [TBL] [Abstract][Full Text] [Related]
15. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913 [TBL] [Abstract][Full Text] [Related]
16. The placement of foot-mounted IMU sensors does affect the accuracy of spatial parameters during regular walking. Küderle A; Roth N; Zlatanovic J; Zrenner M; Eskofier B; Kluge F PLoS One; 2022; 17(6):e0269567. PubMed ID: 35679231 [TBL] [Abstract][Full Text] [Related]
17. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial. Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406 [TBL] [Abstract][Full Text] [Related]
18. Development of an IMU-based foot-ground contact detection (FGCD) algorithm. Kim M; Lee D Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742 [TBL] [Abstract][Full Text] [Related]
19. Validation of algorithms for calculating spatiotemporal gait parameters during continuous turning using lumbar and foot mounted inertial measurement units. Kvist A; Tinmark F; Bezuidenhout L; Reimeringer M; Conradsson DM; Franzén E J Biomech; 2024 Jan; 162():111907. PubMed ID: 38134464 [TBL] [Abstract][Full Text] [Related]
20. Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies. Ullrich M; Kuderle A; Hannink J; Din SD; Gasner H; Marxreiter F; Klucken J; Eskofier BM; Kluge F IEEE J Biomed Health Inform; 2020 Jul; 24(7):1869-1878. PubMed ID: 32086225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]