These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 37069517)

  • 1. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain.
    Breitinger U; Breitinger HG
    Mol Med; 2023 Apr; 29(1):53. PubMed ID: 37069517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated microglia in the spinal cord underlies diabetic neuropathic pain.
    Wang D; Couture R; Hong Y
    Eur J Pharmacol; 2014 Apr; 728():59-66. PubMed ID: 24508519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling.
    Cioffi CL
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice.
    Morita K; Motoyama N; Kitayama T; Morioka N; Kifune K; Dohi T
    J Pharmacol Exp Ther; 2008 Aug; 326(2):633-45. PubMed ID: 18448867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat.
    Silva M; Amorim D; Almeida A; Tavares I; Pinto-Ribeiro F; Morgado C
    Brain Res Bull; 2013 Jul; 96():39-44. PubMed ID: 23644033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine transporter inhibitors as a novel drug discovery strategy for neuropathic pain.
    Dohi T; Morita K; Kitayama T; Motoyama N; Morioka N
    Pharmacol Ther; 2009 Jul; 123(1):54-79. PubMed ID: 19393690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain.
    Ved N; Da Vitoria Lobo ME; Bestall SM; L Vidueira C; Beazley-Long N; Ballmer-Hofer K; Hirashima M; Bates DO; Donaldson LF; Hulse RP
    J Physiol; 2018 Aug; 596(16):3675-3693. PubMed ID: 29774557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventrolateral Periaqueductal Gray Astrocytes Regulate Nociceptive Sensation and Emotional Motivation in Diabetic Neuropathic Pain.
    Yang L; Lu J; Guo J; Chen J; Xiong F; Wang X; Chen L; Yu C
    J Neurosci; 2022 Oct; 42(43):8184-8199. PubMed ID: 36109166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal Wnt5a Plays a Key Role in Spinal Dendritic Spine Remodeling in Neuropathic and Inflammatory Pain Models and in the Proalgesic Effects of Peripheral Wnt3a.
    Simonetti M; Kuner R
    J Neurosci; 2020 Aug; 40(35):6664-6677. PubMed ID: 32616667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteromeric α/β glycine receptors regulate excitability in parvalbumin-expressing dorsal horn neurons through phasic and tonic glycinergic inhibition.
    Gradwell MA; Boyle KA; Callister RJ; Hughes DI; Graham BA
    J Physiol; 2017 Dec; 595(23):7185-7202. PubMed ID: 28905384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glutamatergic system as a target for neuropathic pain relief.
    Osikowicz M; Mika J; Przewlocka B
    Exp Physiol; 2013 Feb; 98(2):372-84. PubMed ID: 23002244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.
    Hossain MZ; Unno S; Ando H; Masuda Y; Kitagawa J
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28954391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH oxidase1 inhibition leads to regression of central sensitization during formalin induced acute nociception via attenuation of ERK1/2-NFκB signaling and glial activation.
    Kumar S; Vinayak M
    Neurochem Int; 2020 Mar; 134():104652. PubMed ID: 31891736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine transporter inhibitors: A new avenue for managing neuropathic pain.
    Al-Khrasani M; Mohammadzadeh A; Balogh M; Király K; Barsi S; Hajnal B; Köles L; Zádori ZS; Harsing LG
    Brain Res Bull; 2019 Oct; 152():143-158. PubMed ID: 31302238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain.
    Li C; Lei Y; Tian Y; Xu S; Shen X; Wu H; Bao S; Wang F
    Mol Pain; 2019; 15():1744806919847366. PubMed ID: 30977423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling.
    Todorovic SM; Jevtovic-Todorovic V
    Pflugers Arch; 2013 Jul; 465(7):921-7. PubMed ID: 23322114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuropathic pain triad: neurons, immune cells and glia.
    Scholz J; Woolf CJ
    Nat Neurosci; 2007 Nov; 10(11):1361-8. PubMed ID: 17965656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord.
    Shimizu-Okabe C; Kobayashi S; Kim J; Kosaka Y; Sunagawa M; Okabe A; Takayama C
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition Mediated by Glycinergic and GABAergic Receptors on Excitatory Neurons in Mouse Superficial Dorsal Horn Is Location-Specific but Modified by Inflammation.
    Takazawa T; Choudhury P; Tong CK; Conway CM; Scherrer G; Flood PD; Mukai J; MacDermott AB
    J Neurosci; 2017 Mar; 37(9):2336-2348. PubMed ID: 28130358
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.