BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37069617)

  • 21. A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability.
    Reis T; Van Gilst MR; Hariharan IK
    PLoS Genet; 2010 Nov; 6(11):e1001206. PubMed ID: 21085633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. orsai, the Drosophila homolog of human ETFRF1, links lipid catabolism to growth control.
    Fernandez-Acosta M; Romero JI; Bernabó G; Velázquez-Campos GM; Gonzalez N; Mares ML; Werbajh S; Avendaño-Vázquez LA; Rechberger GN; Kühnlein RP; Marino-Buslje C; Cantera R; Rezaval C; Ceriani MF
    BMC Biol; 2022 Oct; 20(1):233. PubMed ID: 36266680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells.
    Lee GJ; Jun JW; Hyun S
    Insect Mol Biol; 2015 Jun; 24(3):311-8. PubMed ID: 25492518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Drosophila transmembrane protein Fear-of-intimacy controls glial cell migration.
    Pielage J; Kippert A; Zhu M; Klämbt C
    Dev Biol; 2004 Nov; 275(1):245-57. PubMed ID: 15464587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila.
    Iijima K; Zhao L; Shenton C; Iijima-Ando K
    PLoS One; 2009 Dec; 4(12):e8498. PubMed ID: 20041126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of 20-hydroxyecdysone signaling in Drosophila pupal metabolism.
    Bond ND; Hoshizaki DK; Gibbs AG
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):398-404. PubMed ID: 20817116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knockdown expression of Syndecan in the fat body impacts nutrient metabolism and the organismal response to environmental stresses in Drosophila melanogaster.
    Eveland M; Brokamp GA; Lue CH; Harbison ST; Leips J; De Luca M
    Biochem Biophys Res Commun; 2016 Aug; 477(1):103-108. PubMed ID: 27289019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Balancing crosstalk between 20-hydroxyecdysone-induced autophagy and caspase activity in the fat body during Drosophila larval-prepupal transition.
    Liu H; Jia Q; Tettamanti G; Li S
    Insect Biochem Mol Biol; 2013 Nov; 43(11):1068-78. PubMed ID: 24036278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in
    Andreyeva EN; Bernardo TJ; Kolesnikova TD; Lu X; Yarinich LA; Bartholdy BA; Guo X; Posukh OV; Healton S; Willcockson MA; Pindyurin AV; Zhimulev IF; Skoultchi AI; Fyodorov DV
    Genes Dev; 2017 Mar; 31(6):603-616. PubMed ID: 28404631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes.
    Weake VM; Scott MJ
    BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules.
    Yin S; Qin Q; Zhou B
    BMC Biol; 2017 Feb; 15(1):12. PubMed ID: 28196538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drosophila ZnT1 is essential in the intestine for dietary zinc absorption.
    Wang Z; Li X; Zhou B
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1004-1011. PubMed ID: 33012507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation.
    Qin Q; Wang X; Zhou B
    BMC Biol; 2013 Sep; 11():101. PubMed ID: 24063361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila.
    Bennick RA; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2019 Aug; 516(3):928-933. PubMed ID: 31277943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fly's eye view of zinc homeostasis: Novel insights into the genetic control of zinc metabolism from Drosophila.
    Richards CD; Burke R
    Arch Biochem Biophys; 2016 Dec; 611():142-149. PubMed ID: 27453039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Drosophila TNF ortholog eiger is required in the fat body for a robust immune response.
    Mabery EM; Schneider DS
    J Innate Immun; 2010; 2(4):371-8. PubMed ID: 20505310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster.
    Vanha-Aho LM; Anderl I; Vesala L; Hultmark D; Valanne S; Rämet M
    PLoS Pathog; 2015 May; 11(5):e1004895. PubMed ID: 25965263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain.
    Bai H; Kang P; Tatar M
    Aging Cell; 2012 Dec; 11(6):978-85. PubMed ID: 22935001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Complex Relationship between Immunity and Metabolism in Drosophila Diet-Induced Insulin Resistance.
    Musselman LP; Fink JL; Grant AR; Gatto JA; Tuthill BF; Baranski TJ
    Mol Cell Biol; 2018 Jan; 38(2):. PubMed ID: 29084810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Domeless receptor loss in fat body tissue reverts insulin resistance induced by a high-sugar diet in Drosophila melanogaster.
    Lourido F; Quenti D; Salgado-Canales D; Tobar N
    Sci Rep; 2021 Feb; 11(1):3263. PubMed ID: 33547367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.