These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR. Winkler DA; Le TC Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464 [TBL] [Abstract][Full Text] [Related]
8. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method. Wei Y; Li W; Du T; Hong Z; Lin J Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592 [TBL] [Abstract][Full Text] [Related]
10. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method. Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354 [TBL] [Abstract][Full Text] [Related]
11. Exploring the QSAR's predictive truthfulness of the novel N-tuple discrete derivative indices on benchmark datasets. Martínez-Santiago O; Marrero-Ponce Y; Vivas-Reyes R; Rivera-Borroto OM; Hurtado E; Treto-Suarez MA; Ramos Y; Vergara-Murillo F; Orozco-Ugarriza ME; Martínez-López Y SAR QSAR Environ Res; 2017 May; 28(5):367-389. PubMed ID: 28590848 [TBL] [Abstract][Full Text] [Related]
12. Simplified activity cliff network representations with high interpretability and immediate access to SAR information. Hu H; Bajorath J J Comput Aided Mol Des; 2020 Sep; 34(9):943-952. PubMed ID: 32500478 [TBL] [Abstract][Full Text] [Related]
13. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods. Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658 [TBL] [Abstract][Full Text] [Related]
14. Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling. Kausar S; Falcao AO Molecules; 2019 Apr; 24(9):. PubMed ID: 31052325 [TBL] [Abstract][Full Text] [Related]
15. Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets. Baillif B; Wichard J; Méndez-Lucio O; Rouquié D Front Chem; 2020; 8():296. PubMed ID: 32391323 [TBL] [Abstract][Full Text] [Related]
16. Open-source QSAR models for pKa prediction using multiple machine learning approaches. Mansouri K; Cariello NF; Korotcov A; Tkachenko V; Grulke CM; Sprankle CS; Allen D; Casey WM; Kleinstreuer NC; Williams AJ J Cheminform; 2019 Sep; 11(1):60. PubMed ID: 33430972 [TBL] [Abstract][Full Text] [Related]
17. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
18. Computational method for the identification of third generation activity cliffs. Stumpfe D; Hu H; Bajorath J MethodsX; 2020; 7():100793. PubMed ID: 31993342 [TBL] [Abstract][Full Text] [Related]
19. Novel Solubility Prediction Models: Molecular Fingerprints and Physicochemical Features vs Graph Convolutional Neural Networks. Lee S; Lee M; Gyak KW; Kim SD; Kim MJ; Min K ACS Omega; 2022 Apr; 7(14):12268-12277. PubMed ID: 35449985 [TBL] [Abstract][Full Text] [Related]