These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37069675)

  • 1. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity.
    Tamura S; Miyao T; Bajorath J
    J Cheminform; 2023 Jan; 15(1):4. PubMed ID: 36611204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-based Activity Cliff Prediction Models with Applicability Domain.
    Tamura S; Miyao T; Funatsu K
    Mol Inform; 2020 Dec; 39(12):e2000103. PubMed ID: 32830451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.
    Winkler DA; Le TC
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction.
    Cortés-Ciriano I; Škuta C; Bender A; Svozil D
    J Cheminform; 2020 Jun; 12(1):41. PubMed ID: 33431016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method.
    Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the QSAR's predictive truthfulness of the novel N-tuple discrete derivative indices on benchmark datasets.
    Martínez-Santiago O; Marrero-Ponce Y; Vivas-Reyes R; Rivera-Borroto OM; Hurtado E; Treto-Suarez MA; Ramos Y; Vergara-Murillo F; Orozco-Ugarriza ME; Martínez-López Y
    SAR QSAR Environ Res; 2017 May; 28(5):367-389. PubMed ID: 28590848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplified activity cliff network representations with high interpretability and immediate access to SAR information.
    Hu H; Bajorath J
    J Comput Aided Mol Des; 2020 Sep; 34(9):943-952. PubMed ID: 32500478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling.
    Kausar S; Falcao AO
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31052325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets.
    Baillif B; Wichard J; Méndez-Lucio O; Rouquié D
    Front Chem; 2020; 8():296. PubMed ID: 32391323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-source QSAR models for pKa prediction using multiple machine learning approaches.
    Mansouri K; Cariello NF; Korotcov A; Tkachenko V; Grulke CM; Sprankle CS; Allen D; Casey WM; Kleinstreuer NC; Williams AJ
    J Cheminform; 2019 Sep; 11(1):60. PubMed ID: 33430972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational method for the identification of third generation activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    MethodsX; 2020; 7():100793. PubMed ID: 31993342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Solubility Prediction Models: Molecular Fingerprints and Physicochemical Features vs Graph Convolutional Neural Networks.
    Lee S; Lee M; Gyak KW; Kim SD; Kim MJ; Min K
    ACS Omega; 2022 Apr; 7(14):12268-12277. PubMed ID: 35449985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.