BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37069773)

  • 1. Micro/Nano-Fabrication of Flexible Poly(3,4-Ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices.
    Lv TR; Zhang WH; Yang YQ; Zhang JC; Yin MJ; Yin Z; Yong KT; An QF
    Small; 2023 Jul; 19(30):e2301071. PubMed ID: 37069773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications.
    Tran VV; Lee S; Lee D; Le TH
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors.
    Li L; Meng J; Zhang M; Liu T; Zhang C
    Chem Commun (Camb); 2021 Dec; 58(2):185-207. PubMed ID: 34881748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Bionic Skin Based on Conductive Polymer Gels.
    Li H; Gao G; Xu Z; Tang D; Chen T
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100480. PubMed ID: 34505726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography.
    Rickard JJ; Farrer I; Oppenheimer PG
    ACS Nano; 2016 Mar; 10(3):3865-70. PubMed ID: 26905779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current and Future Trends for Polymer Micro/Nanoprocessing in Industrial Applications.
    Chen D; Wang Y; Zhou H; Huang Z; Zhang Y; Guo CF; Zhou H
    Adv Mater; 2022 Dec; 34(52):e2200903. PubMed ID: 35313049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoarchitectured Porous Conducting Polymers: From Controlled Synthesis to Advanced Applications.
    Luo H; Kaneti YV; Ai Y; Wu Y; Wei F; Fu J; Cheng J; Jing C; Yuliarto B; Eguchi M; Na J; Yamauchi Y; Liu S
    Adv Mater; 2021 Jul; 33(29):e2007318. PubMed ID: 34085735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond Laser 3D-printing of Conductive Microelectronics for Potential Biomedical Applications.
    Dadras-Toussi O; Khorrami M; Abidian MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1197-1200. PubMed ID: 34891501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.
    Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J
    ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures.
    Huo B; Guo CY
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application.
    Feng CP; Wei F; Sun KY; Wang Y; Lan HB; Shang HJ; Ding FZ; Bai L; Yang J; Yang W
    Nanomicro Lett; 2022 Jun; 14(1):127. PubMed ID: 35699776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary Spiky/Spherical Nanoparticle Films with Hierarchical Micro/Nanostructures for High-Performance Flexible Pressure Sensors.
    Kim YR; Kim MP; Park J; Lee Y; Ghosh SK; Kim J; Kang D; Ko H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58403-58411. PubMed ID: 33342213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies.
    Ma Z; Shi W; Yan K; Pan L; Yu G
    Chem Sci; 2019 Jul; 10(25):6232-6244. PubMed ID: 31367298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Performance of Graphene Flexible Pressure Sensor with Micro/Nano Structure.
    Wu W; Han C; Liang R; Xu J; Li B; Hou J; Tang T; Zeng Z; Li J
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges.
    Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in conductive hydrogels: classifications, properties, and applications.
    Zhu T; Ni Y; Biesold GM; Cheng Y; Ge M; Li H; Huang J; Lin Z; Lai Y
    Chem Soc Rev; 2023 Jan; 52(2):473-509. PubMed ID: 36484322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-interfaced flexible and stretchable micro-nano electrodes: from fabrication to sweat glucose detection.
    Qureshi A; Niazi JH
    Mater Horiz; 2023 May; 10(5):1580-1607. PubMed ID: 36880340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors.
    Li G; Li C; Li G; Yu D; Song Z; Wang H; Liu X; Liu H; Liu W
    Small; 2022 Feb; 18(5):e2101518. PubMed ID: 34658130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.