These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37069773)

  • 21. Highly Electrically Conductive Flexible Ionogels by Drop-Casting Ionic Liquid/PEDOT:PSS Composite Liquids onto Hydrogel Networks.
    Yang J; Chang L; Ma C; Cao Z; Liu H
    Macromol Rapid Commun; 2022 Jan; 43(1):e2100557. PubMed ID: 34669220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Biochemical Sensor to Wearable Device: The Key Role of the Conductive Polymer in the Triboelectric Nanogenerator.
    Zhao Z; Mi Y; Lu Y; Zhu Q; Cao X; Wang N
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37366969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review.
    Li X; Chen S; Peng Y; Zheng Z; Li J; Zhong F
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications.
    Shin YK; Shin Y; Lee JW; Seo MH
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of a nanoscale 2D PEDOT pattern
    Kim DH; Lee HJ; Park D; Yim JH; Choi HK
    Nanoscale; 2023 Mar; 15(9):4620-4627. PubMed ID: 36776102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh-Conductivity Polymer Hydrogels with Arbitrary Structures.
    Yao B; Wang H; Zhou Q; Wu M; Zhang M; Li C; Shi G
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28513994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology tailoring of nano/micro-structured conductive polymers, composites and their applications in chemical sensors.
    Ma X; Gao M; He X; Li G
    Recent Pat Nanotechnol; 2010 Nov; 4(3):150-63. PubMed ID: 20615192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly.
    Tao Y; Wei C; Liu J; Deng C; Cai S; Xiong W
    Nanoscale; 2019 May; 11(18):9176-9184. PubMed ID: 31038144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured conductive polymers for advanced energy storage.
    Shi Y; Peng L; Ding Y; Zhao Y; Yu G
    Chem Soc Rev; 2015 Oct; 44(19):6684-96. PubMed ID: 26119242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.
    Li Z; Ma G; Ge R; Qin F; Dong X; Meng W; Liu T; Tong J; Jiang F; Zhou Y; Li K; Min X; Huo K; Zhou Y
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):979-82. PubMed ID: 26630234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced Carbon for Flexible and Wearable Electronics.
    Wang C; Xia K; Wang H; Liang X; Yin Z; Zhang Y
    Adv Mater; 2019 Mar; 31(9):e1801072. PubMed ID: 30300444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Laser 3D Printing of Organic Semiconductor Microdevices for Bioelectronics and Biosensors.
    Dadras-Toussi O; Raghunathan V; Majd S; Abidian MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1569-1572. PubMed ID: 36085618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ginkgo Leaf Inspired Fabrication of Micro/Nanostructures and Demonstration of Flexible Enzyme-Free Glucose Sensors.
    Jiang S; Chen Y; Peng Y
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Printing thermoelectric inks toward next-generation energy and thermal devices.
    Zeng M; Zavanelli D; Chen J; Saeidi-Javash M; Du Y; LeBlanc S; Snyder GJ; Zhang Y
    Chem Soc Rev; 2022 Jan; 51(2):485-512. PubMed ID: 34761784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications.
    Tadesse MG; Lübben JF
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review.
    Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding.
    Wang J; Li Q; Li K; Sun X; Wang Y; Zhuang T; Yan J; Wang H
    Adv Mater; 2022 Mar; 34(12):e2109904. PubMed ID: 35064696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular engineered conjugated polymer with high thermal conductivity.
    Xu Y; Wang X; Zhou J; Song B; Jiang Z; Lee EMY; Huberman S; Gleason KK; Chen G
    Sci Adv; 2018 Mar; 4(3):eaar3031. PubMed ID: 29670943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductive biomaterials for muscle tissue engineering.
    Dong R; Ma PX; Guo B
    Biomaterials; 2020 Jan; 229():119584. PubMed ID: 31704468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.