These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37070071)

  • 21. Spatial coding of visually guided arm movements in primate motor cortex.
    Georgopoulos AP
    Can J Physiol Pharmacol; 1988 Apr; 66(4):518-26. PubMed ID: 3167679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective facilitation of responses to cortical stimulation of proximal and distal arm muscles by precision tasks in man.
    Schieppati M; Trompetto C; Abbruzzese G
    J Physiol; 1996 Mar; 491 ( Pt 2)(Pt 2):551-62. PubMed ID: 8866878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip.
    Johansson RS; Lemon RN; Westling G
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):761-75. PubMed ID: 7707242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortico-cortical paired associative stimulation conditioning superficial ventral premotor cortex-primary motor cortex connectivity influences motor cortical activity during precision grip.
    Casarotto A; Dolfini E; Fadiga L; Koch G; D'Ausilio A
    J Physiol; 2023 Sep; 601(17):3945-3960. PubMed ID: 37526070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional properties of single neurons in the face primary motor cortex of the primate. III. Relations with different directions of trained tongue protrusion.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):775-85. PubMed ID: 1578254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of bilateral cold block of the primate face primary somatosensory cortex on the performance of trained tongue-protrusion task and biting tasks.
    Lin LD; Murray GM; Sessle BJ
    J Neurophysiol; 1993 Sep; 70(3):985-96. PubMed ID: 8229183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Discrete peaks" of excitability and map overlap reveal task-specific organization of primary motor cortex for control of human forearm muscles.
    Massé-Alarie H; Bergin MJG; Schneider C; Schabrun S; Hodges PW
    Hum Brain Mapp; 2017 Dec; 38(12):6118-6132. PubMed ID: 28921724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical and reticular contributions to human precision and power grip.
    Tazoe T; Perez MA
    J Physiol; 2017 Apr; 595(8):2715-2730. PubMed ID: 27891607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation.
    Fu L; Rocchi L; Hannah R; Xu G; Rothwell JC; Ibáñez J
    J Physiol; 2021 May; 599(9):2471-2482. PubMed ID: 31579945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time slacking as a default mode of grip force control: implications for force minimization and personal grip force variation.
    Smith BW; Rowe JB; Reinkensmeyer DJ
    J Neurophysiol; 2018 Oct; 120(4):2107-2120. PubMed ID: 30089024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Training of a discrete motor skill in humans is accompanied by increased excitability of the fastest corticospinal connections at movement onset.
    Wiegel P; Leukel C
    J Physiol; 2020 Aug; 598(16):3485-3500. PubMed ID: 32452030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary Motor Cortex Activation during Action Observation of Tasks at Different Video Speeds Is Dependent on Movement Task and Muscle Properties.
    Moriuchi T; Matsuda D; Nakamura J; Matsuo T; Nakashima A; Nishi K; Fujiwara K; Iso N; Nakane H; Higashi T
    Front Hum Neurosci; 2017; 11():10. PubMed ID: 28163678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles.
    Frysinger RC; Bourbonnais D; Kalaska JF; Smith AM
    J Neurophysiol; 1984 Jan; 51(1):32-49. PubMed ID: 6693934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway?
    Hannah R; Rocchi L; Rothwell JC
    Front Neurosci; 2018; 12():347. PubMed ID: 29875628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates.
    Scott SH
    Curr Opin Neurobiol; 2003 Dec; 13(6):671-7. PubMed ID: 14662367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates.
    Kalaska JF
    F1000Res; 2019; 8():. PubMed ID: 31275561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parietal area 5 activity does not reflect the differential time-course of motor output kinetics during arm-reaching and isometric-force tasks.
    Hamel-Pâquet C; Sergio LE; Kalaska JF
    J Neurophysiol; 2006 Jun; 95(6):3353-70. PubMed ID: 16481461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study.
    He S; Everest-Phillips C; Clouter A; Brown P; Tan H
    J Neurosci; 2020 May; 40(20):4021-4032. PubMed ID: 32284339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Striatal neuronal activity during the initiation and execution of hand movements made in response to visual and vibratory cues.
    Gardiner TW; Nelson RJ
    Exp Brain Res; 1992; 92(1):15-26. PubMed ID: 1486949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task.
    Kalaska JF; Cohen DA; Hyde ML; Prud'homme M
    J Neurosci; 1989 Jun; 9(6):2080-102. PubMed ID: 2723767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.