These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37070130)
21. Multi-atlas-based auto-segmentation for prostatic urethra using novel prediction of deformable image registration accuracy. Takagi H; Kadoya N; Kajikawa T; Tanaka S; Takayama Y; Chiba T; Ito K; Dobashi S; Takeda K; Jingu K Med Phys; 2020 Jul; 47(7):3023-3031. PubMed ID: 32201958 [TBL] [Abstract][Full Text] [Related]
22. Development of Simplified Auto-Segmentable Functional Cardiac Atlas. Loap P; De Marzi L; Kirov K; Servois V; Fourquet A; Khoubeyb A; Kirova Y Pract Radiat Oncol; 2022; 12(6):533-538. PubMed ID: 35192938 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of multiple-atlas-based strategies for segmentation of the thyroid gland in head and neck CT images for IMRT. Chen A; Niermann KJ; Deeley MA; Dawant BM Phys Med Biol; 2012 Jan; 57(1):93-111. PubMed ID: 22126838 [TBL] [Abstract][Full Text] [Related]
25. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers. Kim N; Chang JS; Kim YB; Kim JS Radiat Oncol; 2020 May; 15(1):106. PubMed ID: 32404123 [TBL] [Abstract][Full Text] [Related]
26. WE-E-213CD-09: Multi-Atlas Fusion Using a Tissue Appearance Model. Yang J; Garden A; Zhang Y; Zhang L; Court L; Dong L Med Phys; 2012 Jun; 39(6Part27):3961. PubMed ID: 28519979 [TBL] [Abstract][Full Text] [Related]
27. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389 [TBL] [Abstract][Full Text] [Related]
28. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT. Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663 [TBL] [Abstract][Full Text] [Related]
30. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related]
31. Performance evaluation of automatic anatomy segmentation algorithm on repeat or four-dimensional computed tomography images using deformable image registration method. Wang H; Garden AS; Zhang L; Wei X; Ahamad A; Kuban DA; Komaki R; O'Daniel J; Zhang Y; Mohan R; Dong L Int J Radiat Oncol Biol Phys; 2008 Sep; 72(1):210-9. PubMed ID: 18722272 [TBL] [Abstract][Full Text] [Related]
32. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
33. Automatic segmentation of cardiac substructures from noncontrast CT images: accurate enough for dosimetric analysis? Luo Y; Xu Y; Liao Z; Gomez D; Wang J; Jiang W; Zhou R; Williamson R; Court LE; Yang J Acta Oncol; 2019 Jan; 58(1):81-87. PubMed ID: 30306817 [TBL] [Abstract][Full Text] [Related]
34. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach. Qazi AA; Pekar V; Kim J; Xie J; Breen SL; Jaffray DA Med Phys; 2011 Nov; 38(11):6160-70. PubMed ID: 22047381 [TBL] [Abstract][Full Text] [Related]
35. Quantitative Comparisons of Deep-learning-based and Atlas-based Auto- segmentation of the Intermediate Risk Clinical Target Volume for Nasopharyngeal Carcinoma. He Y; Zhang S; Luo Y; Yu H; Fu Y; Wu Z; Jiang X; Li P Curr Med Imaging; 2022; 18(3):335-345. PubMed ID: 34455965 [TBL] [Abstract][Full Text] [Related]
36. Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region. Lee H; Lee E; Kim N; Kim JH; Park K; Lee H; Chun J; Shin JI; Chang JS; Kim JS Front Oncol; 2019; 9():239. PubMed ID: 31024843 [No Abstract] [Full Text] [Related]
37. Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiotherapy. Li Z; Zhang W; Li B; Zhu J; Peng Y; Li C; Zhu J; Zhou Q; Yin Y Radiother Oncol; 2022 Dec; 177():222-230. PubMed ID: 36375561 [TBL] [Abstract][Full Text] [Related]
38. Impact of CT reconstruction algorithm on auto-segmentation performance. Miller C; Mittelstaedt D; Black N; Klahr P; Nejad-Davarani S; Schulz H; Goshen L; Han X; Ghanem AI; Morris ED; Glide-Hurst C J Appl Clin Med Phys; 2019 Sep; 20(9):95-103. PubMed ID: 31538718 [TBL] [Abstract][Full Text] [Related]
39. Quantification of liver-Lung shunt fraction on 3D SPECT/CT images for selective internal radiation therapy of liver cancer using CNN-based segmentations and non-rigid registration. Luu MH; Mai HS; Pham XL; Le QA; Le QK; Walsum TV; Le NH; Franklin D; Le VH; Moelker A; Chu DT; Trung NL Comput Methods Programs Biomed; 2023 May; 233():107453. PubMed ID: 36921463 [TBL] [Abstract][Full Text] [Related]
40. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]