These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3707021)

  • 21. Effect of acute hemorrhage on transcutaneous, subcutaneous, intramuscular, and arterial oxygen tensions.
    Matsen FA; Wyss CR; King RV; Simmons CW
    Pediatrics; 1980 May; 65(5):881-3. PubMed ID: 7367133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renal lactate and pyruvate metabolism in dogs after graded renal ischemia.
    Flatmark AL; Brodwall EK; Nornes H; Nesbakken R
    Invest Urol; 1971 Jul; 9(1):25-30. PubMed ID: 4935216
    [No Abstract]   [Full Text] [Related]  

  • 23. Mechanism of the redistribution of renal cortical blood flow during hemorrhagic hypotension in the dog.
    Stein JH; Boonjarern S; Mauk RC; Ferris TF
    J Clin Invest; 1973 Jan; 52(1):39-47. PubMed ID: 4682388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoregulation and regional blood flow of the dog during hemorrhagic shock.
    Hamaji M; Nakamura M; Izukura M; Nakaba H; Hashimoto T; Tanaka Y; Tumori T; Miyata M; Kawashima Y; Harrison TS
    Circ Shock; 1986; 19(3):245-55. PubMed ID: 3731400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Microcirculation and oxygen tension in the cerebral cortex of rats with hemorrhagic shock].
    Udovichenko VI; Shtykhno IuM
    Biull Eksp Biol Med; 1982 Apr; 93(4):8-9. PubMed ID: 7082809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen consumption, lactic acid, and LDH-production in kidney slices during shock.
    Gelin LE; Thomée M
    Bibl Anat; 1973; 12():315-20. PubMed ID: 4790367
    [No Abstract]   [Full Text] [Related]  

  • 27. Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease.
    Ow CP; Abdelkader A; Hilliard LM; Phillips JK; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2014 Nov; 307(10):R1207-15. PubMed ID: 25209412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of normobaric hyperoxia therapy for amelioration of haemorrhagic shock-induced acute renal failure.
    Efrati S; Berman S; Ben Aharon G; Siman-Tov Y; Averbukh Z; Weissgarten J
    Nephrol Dial Transplant; 2008 Jul; 23(7):2213-22. PubMed ID: 18400820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global energetic failure in brain-dead patients.
    Depret J; Teboul JL; Benoit G; Mercat A; Richard C
    Transplantation; 1995 Nov; 60(9):966-71. PubMed ID: 7491702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral and liver tissue oxygen tensions in hemorrhagic shock.
    Soini HO; Takala J; Nordin AJ; Mäkisalo HJ; Höckerstedt KA
    Crit Care Med; 1992 Sep; 20(9):1330-4. PubMed ID: 1521449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemorrhagic shock in dogs. Comparison of treatment with shed blood alone versus shed blood plus Ringer's lactate: intravascular pressures, cardiac output, oxygen consumption, arteriovenous oxygen differences, extracellular fluid PO2, electrolyte changes, and survival rates.
    Zollman W; Culpepper RD; Turner MD; Hardy JA; Hardy JD
    Am J Surg; 1976 Mar; 131(3):298-305. PubMed ID: 3984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Renocortical oxygen supply after kidney transplantation. Renocortical oxygen supply and kidney circulation after autologous kidney transplantation in the dog; its value for human kidney transplantation].
    Wilms H
    Fortschr Med; 1980 Jun; 98(22):865-8. PubMed ID: 6997155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal muscle PO2: indicator of peripheral tissue perfusion in haemorrhagic shock.
    Niinikoski J; Halkola L
    Adv Exp Med Biol; 1977 Jul 4-7; 94():585-92. PubMed ID: 26185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebral tissue lactate in experimental oligemic shock.
    Feldman RA; Yashon D; Locke GE; Hunt WE
    J Neurosurg; 1971 Jun; 34(6):774-8. PubMed ID: 5561021
    [No Abstract]   [Full Text] [Related]  

  • 35. Subcutaneous and liver tissue oxygen tension in hemorrhagic shock: an experimental study with whole blood and two colloids.
    Mäkisalo HJ; Soini HO; Tapani Lalla ML; Höckerstedt KA
    Crit Care Med; 1988 Sep; 16(9):857-61. PubMed ID: 2456892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determinants of intrarenal oxygenation. II. Hemodynamic effects.
    Brezis M; Heyman SN; Epstein FH
    Am J Physiol; 1994 Dec; 267(6 Pt 2):F1063-8. PubMed ID: 7810693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of exogenous acetate during canine haemorrhagic shock.
    Kveim M; Nesbakken R
    Scand J Clin Lab Invest; 1979 Nov; 39(7):653-8. PubMed ID: 43582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Changes in skeletal muscle Po2 and Pco2 in hemorrhagic shock (author's transl)].
    Okada K; Kosugi I; Yamaguchi Y; In-nami H; Kawashima Y
    Kokyu To Junkan; 1976 Feb; 24(2):149-54. PubMed ID: 943831
    [No Abstract]   [Full Text] [Related]  

  • 39. Intrarenal oxygen tension measured by a modified clark electrode at normal and low blood pressure and after injection of x-ray contrast media.
    Liss P; Nygren A; Revsbech NP; Ulfendahl HR
    Pflugers Arch; 1997 Nov; 434(6):705-11. PubMed ID: 9306002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between lactate turnover rate and blood concentration in hemorrhagic shock.
    Eldridge FL
    J Appl Physiol; 1974 Sep; 37(3):321-3. PubMed ID: 4415538
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.