BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37070287)

  • 1. On a finite strain modeling of growth in budding yeast.
    Awada Z; Nedjar B
    Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3710. PubMed ID: 37070287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient isogeometric thin shell formulations for soft biological materials.
    Roohbakhshan F; Sauer RA
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1569-1597. PubMed ID: 28405768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force generation by endocytic actin patches in budding yeast.
    Carlsson AE; Bayly PV
    Biophys J; 2014 Apr; 106(8):1596-606. PubMed ID: 24739159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Female patient-specific finite element modeling of pelvic organ prolapse (POP).
    Chen ZW; Joli P; Feng ZQ; Rahim M; Pirró N; Bellemare ME
    J Biomech; 2015 Jan; 48(2):238-45. PubMed ID: 25529137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthotropic active strain models for the numerical simulation of cardiac biomechanics.
    Rossi S; Ruiz-Baier R; Pavarino LF; Quarteroni A
    Int J Numer Method Biomed Eng; 2012; 28(6-7):761-88. PubMed ID: 25364850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2013 Nov; 135(11):111001. PubMed ID: 23775399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.
    Weickenmeier J; Jabareen M
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1238-62. PubMed ID: 24817477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fibre reorientation model for orthotropic multiplicative growth. Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects.
    Menzel A
    Biomech Model Mechanobiol; 2007 Sep; 6(5):303-20. PubMed ID: 17149642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation.
    Ateshian GA; Albro MB; Maas S; Weiss JA
    J Biomech Eng; 2011 Aug; 133(8):081005. PubMed ID: 21950898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.
    Vande Geest JP; Simon BR; Rigby PH; Newberg TP
    J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model of polar growth in pollen tubes.
    Fayant P; Girlanda O; Chebli Y; Aubin CE; Villemure I; Geitmann A
    Plant Cell; 2010 Aug; 22(8):2579-93. PubMed ID: 20699395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Eulerian/XFEM formulation for the large deformation of cortical cell membrane.
    Vernerey FJ; Farsad M
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):433-45. PubMed ID: 21516528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.