These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37070341)

  • 1. Helical intermediate formation and its role in amyloids of an amphibian antimicrobial peptide.
    Prasad AK; Martin LL; Panwar AS
    Phys Chem Chem Phys; 2023 May; 25(17):12134-12147. PubMed ID: 37070341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary Structure Transitions for a Family of Amyloidogenic, Antimicrobial Uperin 3 Peptides in Contact with Sodium Dodecyl Sulfate.
    Prasad AK; Tiwari C; Ray S; Holden S; Armstrong DA; Rosengren KJ; Rodger A; Panwar AS; Martin LL
    Chempluschem; 2022 Jan; 87(1):e202100408. PubMed ID: 35032115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Role of Peptide Helical Stability in the Propensity of Uperin 3.
    Ray S; Holden S; Prasad AK; Martin LL; Panwar AS
    J Phys Chem B; 2020 Dec; 124(51):11659-11670. PubMed ID: 33322900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of Secondary Structure Transitions and Peptide Self-Assembly Propensity in Trifluoroethanol-Water Mixtures.
    Prasad AK; Samajdar R; Panwar AS; Martin LL
    J Phys Chem B; 2024 Aug; 128(32):7736-7749. PubMed ID: 39088441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid Self-Assembly of hIAPP8-20 via the Accumulation of Helical Oligomers, α-Helix to β-Sheet Transition, and Formation of β-Barrel Intermediates.
    Sun Y; Kakinen A; Xing Y; Faridi P; Nandakumar A; Purcell AW; Davis TP; Ke PC; Ding F
    Small; 2019 May; 15(18):e1805166. PubMed ID: 30908844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of Amyloidogenic Peptide Uperin-Molecular Dynamics Simulations.
    Ermakova E; Makshakova O; Kurbanov R; Ibraev I; Zuev Y; Sedov I
    Molecules; 2023 May; 28(10):. PubMed ID: 37241811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range Regulation of Partially Folded Amyloidogenic Peptides.
    Bhattacharya S; Xu L; Thompson D
    Sci Rep; 2020 May; 10(1):7597. PubMed ID: 32371882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of dynamic soluble surfactant-induced amyloid β peptide aggregation intermediates.
    Abelein A; Kaspersen JD; Nielsen SB; Jensen GV; Christiansen G; Pedersen JS; Danielsson J; Otzen DE; Gräslund A
    J Biol Chem; 2013 Aug; 288(32):23518-28. PubMed ID: 23775077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid.
    Salinas N; Tayeb-Fligelman E; Sammito MD; Bloch D; Jelinek R; Noy D; Usón I; Landau M
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What can AlphaFold do for antimicrobial amyloids?
    Ragonis-Bachar P; Axel G; Blau S; Ben-Tal N; Kolodny R; Landau M
    Proteins; 2024 Feb; 92(2):265-281. PubMed ID: 37855235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the α-helical intermediate preceding the aggregation of the amino-terminal fragment of the β amyloid peptide (Aβ(1-28)).
    Rojas AV; Liwo A; Scheraga HA
    J Phys Chem B; 2011 Nov; 115(44):12978-83. PubMed ID: 21939202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu
    Klose D; Vemulapalli SPB; Richman M; Rudnick S; Aisha V; Abayev M; Chemerovski M; Shviro M; Zitoun D; Majer K; Wili N; Goobes G; Griesinger C; Jeschke G; Rahimipour S
    Phys Chem Chem Phys; 2022 Mar; 24(11):6699-6715. PubMed ID: 35234757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a plant cyclotide on conformational dynamics and destabilization of β-amyloid fibrils through molecular dynamics simulations.
    Kalmankar NV; Gehi BR; Sowdhamini R
    Front Mol Biosci; 2022; 9():986704. PubMed ID: 36250019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Amyloidogenic Peptide Aggregability in Helical Subspace.
    Bhattacharya S; Xu L; Thompson D
    Methods Mol Biol; 2022; 2340():401-448. PubMed ID: 35167084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insights into the oligomerization dynamics and conformations of amyloidogenic and non-amyloidogenic amylin from discrete molecular dynamics simulations.
    Wang Y; Liu Y; Zhang Y; Wei G; Ding F; Sun Y
    Phys Chem Chem Phys; 2022 Sep; 24(36):21773-21785. PubMed ID: 36098068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein.
    Bhattacharya S; Xu L; Thompson D
    ACS Chem Neurosci; 2019 Jun; 10(6):2830-2842. PubMed ID: 30917651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation.
    Sonar K; Mancera RL
    J Phys Chem B; 2022 Oct; 126(40):7916-7933. PubMed ID: 36179370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Perturbation of Monomers Determines the Amyloid Aggregation Propensity of Calcitonin Variants.
    Liu Y; Wang Y; Zhang Y; Zou Y; Wei G; Ding F; Sun Y
    J Chem Inf Model; 2023 Jan; 63(1):308-320. PubMed ID: 36456917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.