These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37070737)

  • 1. Droplet-based microfluidic platform for viscosity measurement over extended concentration range.
    Cochard-Marchewka P; Bremond N; Baudry J
    Lab Chip; 2023 May; 23(9):2276-2285. PubMed ID: 37070737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet-Based Microfluidic Tool to Quantify Viscosity of Concentrating Protein Solutions.
    Yang D; Daviran M; Schultz KM; Walker LM
    Pharm Res; 2021 Oct; 38(10):1765-1775. PubMed ID: 34664208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput rheology in a microfluidic device.
    Schultz KM; Furst EM
    Lab Chip; 2011 Nov; 11(22):3802-9. PubMed ID: 21952259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids.
    Mustafa A; Eser A; Aksu AC; Kiraz A; Tanyeri M; Erten A; Yalcin O
    Anal Chim Acta; 2020 Oct; 1135():107-115. PubMed ID: 33070846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer.
    Del Giudice F; Barnes C
    Anal Chem; 2022 Mar; 94(8):3617-3628. PubMed ID: 35167252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets.
    Chan EM; Alivisatos AP; Mathies RA
    J Am Chem Soc; 2005 Oct; 127(40):13854-61. PubMed ID: 16201806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.
    Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable Microfluidic Viscometer for Formulation Development and in Situ Quality Control of Protein and Antibody Solutions.
    Lenzen PS; Dingfelder F; Müller M; Arosio P
    Anal Chem; 2024 Aug; 96(32):13185-13190. PubMed ID: 39093923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics.
    Taylor N; Elbaum-Garfinkle S; Vaidya N; Zhang H; Stone HA; Brangwynne CP
    Soft Matter; 2016 Nov; 12(45):9142-9150. PubMed ID: 27791212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and application of PEGylated tracer particles for measuring protein solution viscosities using Dynamic Light Scattering-based microrheology.
    Garting T; Stradner A
    Colloids Surf B Biointerfaces; 2019 Sep; 181():516-523. PubMed ID: 31181434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle-Based Microrheology As a Tool for Characterizing Protein-Based Materials.
    Meleties M; Martineau RL; Gupta MK; Montclare JK
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2747-2763. PubMed ID: 35678203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Microrheology of Protein Solutions Using Tailored Nanoparticles.
    Garting T; Stradner A
    Small; 2018 Nov; 14(46):e1801548. PubMed ID: 30070021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions.
    Allmendinger A; Fischer S; Huwyler J; Mahler HC; Schwarb E; Zarraga IE; Mueller R
    Eur J Pharm Biopharm; 2014 Jul; 87(2):318-28. PubMed ID: 24560966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel temperature-dependent microrheological measurements in a microfluidic chip.
    Josephson LL; Galush WJ; Furst EM
    Biomicrofluidics; 2016 Jul; 10(4):043503. PubMed ID: 27375825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N; Burns MA
    Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide.
    Moschakis T; Murray BS; Dickinson E
    Langmuir; 2006 May; 22(10):4710-9. PubMed ID: 16649786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effects of Multiple Excipients on Controlling Viscosity of Concentrated Protein Dispersions.
    Yang D; Walker LM
    J Pharm Sci; 2023 May; 112(5):1379-1387. PubMed ID: 36539064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.