These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37070786)

  • 1. Enhancing the network specific individual characteristics in rs-fMRI functional connectivity by dictionary learning.
    Jain P; Chakraborty A; Hafiz R; Sao AK; Biswal B
    Hum Brain Mapp; 2023 Jun; 44(8):3410-3432. PubMed ID: 37070786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociating individual connectome traits using low-rank learning.
    Qin J; Shen H; Zeng LL; Gao K; Luo Z; Hu D
    Brain Res; 2019 Nov; 1722():146348. PubMed ID: 31348912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximizing dissimilarity in resting state detects heterogeneous subtypes in healthy population associated with high substance use and problems in antisocial personality.
    Kashyap R; Bhattacharjee S; Yeo BTT; Chen SHA
    Hum Brain Mapp; 2020 Apr; 41(5):1261-1273. PubMed ID: 31773817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in Resting-State Functional Magnetic Resonance Imaging: The Effect of Body Mass, Blood Pressure, Hematocrit, and Glycated Hemoglobin on Hemodynamic and Neuronal Parameters.
    Sjuls GS; Specht K
    Brain Connect; 2022 Dec; 12(10):870-882. PubMed ID: 35473334
    [No Abstract]   [Full Text] [Related]  

  • 5. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
    Jann K; Gee DG; Kilroy E; Schwab S; Smith RX; Cannon TD; Wang DJ
    Neuroimage; 2015 Feb; 106():111-22. PubMed ID: 25463468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined measure of functional connectomes for improved identifiability and prediction.
    Cai B; Zhang G; Hu W; Zhang A; Zille P; Zhang Y; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    Hum Brain Mapp; 2019 Nov; 40(16):4843-4858. PubMed ID: 31355994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Functional Connectome Fingerprinting with Degree-Normalization.
    Chiêm B; Abbas K; Amico E; Duong-Tran DA; Crevecoeur F; Goñi J
    Brain Connect; 2022 Mar; 12(2):180-192. PubMed ID: 34015966
    [No Abstract]   [Full Text] [Related]  

  • 8. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An information network flow approach for measuring functional connectivity and predicting behavior.
    Kumar S; Yoo K; Rosenberg MD; Scheinost D; Constable RT; Zhang S; Li CR; Chun MM
    Brain Behav; 2019 Aug; 9(8):e01346. PubMed ID: 31286688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.
    Chen X; Zhang H; Zhang L; Shen C; Lee SW; Shen D
    Hum Brain Mapp; 2017 Oct; 38(10):5019-5034. PubMed ID: 28665045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability.
    Lu J; Yan T; Yang L; Zhang X; Li J; Li D; Xiang J; Wang B
    Neuroimage; 2024 Jul; 295():120651. PubMed ID: 38788914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual-specific fMRI-Subspaces improve functional connectivity prediction of behavior.
    Kashyap R; Kong R; Bhattacharjee S; Li J; Zhou J; Thomas Yeo BT
    Neuroimage; 2019 Apr; 189():804-812. PubMed ID: 30711467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual differences in functional connectivity during naturalistic viewing conditions.
    Vanderwal T; Eilbott J; Finn ES; Craddock RC; Turnbull A; Castellanos FX
    Neuroimage; 2017 Aug; 157():521-530. PubMed ID: 28625875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiview Feature Learning With Multiatlas-Based Functional Connectivity Networks for MCI Diagnosis.
    Zhang Y; Zhang H; Adeli E; Chen X; Liu M; Shen D
    IEEE Trans Cybern; 2022 Jul; 52(7):6822-6833. PubMed ID: 33306476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering multi-site identifiability based on resting-state functional connectomes.
    Bari S; Amico E; Vike N; Talavage TM; Goñi J
    Neuroimage; 2019 Nov; 202():115967. PubMed ID: 31352124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI.
    Airan RD; Vogelstein JT; Pillai JJ; Caffo B; Pekar JJ; Sair HI
    Hum Brain Mapp; 2016 May; 37(5):1986-97. PubMed ID: 27012314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding.
    Hannum A; Lopez MA; Blanco SA; Betzel RF
    Hum Brain Mapp; 2023 Nov; 44(16):5294-5308. PubMed ID: 37498048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.