These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 37070964)

  • 21. The potential role of genetic assimilation during maize domestication.
    Lorant A; Pedersen S; Holst I; Hufford MB; Winter K; Piperno D; Ross-Ibarra J
    PLoS One; 2017; 12(9):e0184202. PubMed ID: 28886108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-precision chronology for Central American maize diversification from El Gigante rockshelter, Honduras.
    Kennett DJ; Thakar HB; VanDerwarker AM; Webster DL; Culleton BJ; Harper TK; Kistler L; Scheffler TE; Hirth K
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9026-9031. PubMed ID: 28784803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca.
    Benz BF
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):2104-6. PubMed ID: 11172083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors.
    Maag D; Erb M; Bernal JS; Wolfender JL; Turlings TC; Glauser G
    PLoS One; 2015; 10(8):e0135722. PubMed ID: 26267478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genomic signature of crop-wild introgression in maize.
    Hufford MB; Lubinksy P; Pyhäjärvi T; Devengenzo MT; Ellstrand NC; Ross-Ibarra J
    PLoS Genet; 2013 May; 9(5):e1003477. PubMed ID: 23671421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize.
    Karn A; Gillman JD; Flint-Garcia SA
    G3 (Bethesda); 2017 Apr; 7(4):1157-1164. PubMed ID: 28188181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cultivation has selected for a wider niche and large range shifts in maize.
    Yang R; Cao R; Gong X; Feng J
    PeerJ; 2022; 10():e14019. PubMed ID: 36168438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a natural allelic series at the maize domestication locus teosinte branched1.
    Studer AJ; Doebley JF
    Genetics; 2012 Jul; 191(3):951-8. PubMed ID: 22505628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Archaeological findings show the extent of primitive characteristics of maize in South America.
    Costa FM; Vidal R; de Almeida Silva NC; Veasey EA; de Oliveira Freitas F; Zucchi MI
    Sci Adv; 2024 Sep; 10(36):eadn1466. PubMed ID: 39231236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root volatile profiles and herbivore preference are mediated by maize domestication, geographic spread, and modern breeding.
    Bernal JS; Helms AM; Fontes-Puebla AA; DeWitt TJ; Kolomiets MV; Grunseich JM
    Planta; 2022 Dec; 257(1):24. PubMed ID: 36562877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Andres, Tabasco, Mexico.
    Pohl ME; Piperno DR; Pope KO; Jones JG
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6870-5. PubMed ID: 17426147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte.
    Flint-Garcia SA; Bodnar AL; Scott MP
    Theor Appl Genet; 2009 Oct; 119(6):1129-42. PubMed ID: 19701625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gradual domestication of root traits in the earliest maize from Tehuacán.
    Lopez-Valdivia I; Perkins AC; Schneider HM; Vallebueno-Estrada M; Burridge JD; González-Orozco E; Montufar A; Montiel R; Lynch JP; Vielle-Calzada JP
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2110245119. PubMed ID: 35446704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous hybridization between maize and teosinte.
    Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L
    J Hered; 2007; 98(2):183-7. PubMed ID: 17400586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight.
    Hufford MB; Martínez-Meyer E; Gaut BS; Eguiarte LE; Tenaillon MI
    PLoS One; 2012; 7(11):e47659. PubMed ID: 23155371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early allelic selection in maize as revealed by ancient DNA.
    Jaenicke-Després V; Buckler ES; Smith BD; Gilbert MT; Cooper A; Doebley J; Pääbo S
    Science; 2003 Nov; 302(5648):1206-8. PubMed ID: 14615538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maize biochemistry in response to root herbivory was mediated by domestication, spread, and breeding.
    Fontes-Puebla AA; Borrego EJ; Kolomiets MV; Bernal JS
    Planta; 2021 Sep; 254(4):70. PubMed ID: 34499214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications.
    Piperno DR; Flannery KV
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):2101-3. PubMed ID: 11172082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early maize agriculture and interzonal interaction in southern Peru.
    Perry L; Sandweiss DH; Piperno DR; Rademaker K; Malpass MA; Umire A; de la Vera P
    Nature; 2006 Mar; 440(7080):76-9. PubMed ID: 16511492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.