BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37071125)

  • 21. Overlapping Requirements for Tet2 and Tet3 in Normal Development and Hematopoietic Stem Cell Emergence.
    Li C; Lan Y; Schwartz-Orbach L; Korol E; Tahiliani M; Evans T; Goll MG
    Cell Rep; 2015 Aug; 12(7):1133-43. PubMed ID: 26257178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome.
    Yokomizo-Nakano T; Kubota S; Bai J; Hamashima A; Morii M; Sun Y; Katagiri S; Iimori M; Kanai A; Tanaka D; Oshima M; Harada Y; Ohyashiki K; Iwama A; Harada H; Osato M; Sashida G
    Cancer Res; 2020 Jun; 80(12):2523-2536. PubMed ID: 32341038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concurrent Zrsr2 mutation and Tet2 loss promote myelodysplastic neoplasm in mice.
    Garcia-Ruiz C; Martínez-Valiente C; Cordón L; Liquori A; Fernández-González R; Pericuesta E; Sandoval J; Cervera J; Gutiérrez-Adán A; Sanjuan-Pla A
    Leukemia; 2022 Oct; 36(10):2509-2518. PubMed ID: 36030305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell Homeostasis.
    Ito K; Lee J; Chrysanthou S; Zhao Y; Josephs K; Sato H; Teruya-Feldstein J; Zheng D; Dawlaty MM; Ito K
    Cell Rep; 2019 Sep; 28(10):2480-2490.e4. PubMed ID: 31484061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TET2 Mutation and High miR-22 Expression as Biomarkers to Predict Clinical Outcome in Myelodysplastic Syndrome Patients Treated with Hypomethylating Therapy.
    Yun J; Ji YS; Jang GH; Lim SH; Kim SH; Kim CK; Bae SB; Won JH; Park SK
    Curr Issues Mol Biol; 2021 Aug; 43(2):917-931. PubMed ID: 34449560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylation and silencing of miRNA-124 by EVI1 and self-renewal exhaustion of hematopoietic stem cells in murine myelodysplastic syndrome.
    Dickstein J; Senyuk V; Premanand K; Laricchia-Robbio L; Xu P; Cattaneo F; Fazzina R; Nucifora G
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9783-8. PubMed ID: 20448201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stem and progenitor cell alterations in myelodysplastic syndromes.
    Shastri A; Will B; Steidl U; Verma A
    Blood; 2017 Mar; 129(12):1586-1594. PubMed ID: 28159737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aberrant Alternative Splicing in U2af1/Tet2 Double Mutant Mice Contributes to Major Hematological Phenotypes.
    Martínez-Valiente C; Garcia-Ruiz C; Rosón B; Liquori A; González-Romero E; Fernández-González R; Gómez-Redondo I; Cervera J; Gutiérrez-Adán A; Sanjuan-Pla A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34203454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Analysis of the Genetic Variants in Haematopoietic Stem/Progenitor and Mesenchymal Stem Cell Compartments in de novo Myelodysplastic Syndromes.
    Bandara WMMS; Rathnayake AJIS; Neththikumara NF; Goonasekera HWW; Dissanayake VHW
    Blood Cells Mol Dis; 2021 May; 88():102535. PubMed ID: 33461003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acquired mutations in TET2 are common in myelodysplastic syndromes.
    Langemeijer SM; Kuiper RP; Berends M; Knops R; Aslanyan MG; Massop M; Stevens-Linders E; van Hoogen P; van Kessel AG; Raymakers RA; Kamping EJ; Verhoef GE; Verburgh E; Hagemeijer A; Vandenberghe P; de Witte T; van der Reijden BA; Jansen JH
    Nat Genet; 2009 Jul; 41(7):838-42. PubMed ID: 19483684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling.
    Lam J; van den Bosch M; Wegrzyn J; Parker J; Ibrahim R; Slowski K; Chang L; Martinez-Høyer S; Condorelli G; Boldin M; Deng Y; Umlandt P; Fuller M; Karsan A
    Nat Commun; 2018 Jun; 9(1):2418. PubMed ID: 29925839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pedigree investigation, clinical characteristics, and prognosis analysis of haematological disease patients with germline TET2 mutation.
    Wu X; Deng J; Zhang N; Liu X; Zheng X; Yan T; Ye W; Gong Y
    BMC Cancer; 2022 Mar; 22(1):262. PubMed ID: 35279121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders.
    Muto T; Sashida G; Oshima M; Wendt GR; Mochizuki-Kashio M; Nagata Y; Sanada M; Miyagi S; Saraya A; Kamio A; Nagae G; Nakaseko C; Yokote K; Shimoda K; Koseki H; Suzuki Y; Sugano S; Aburatani H; Ogawa S; Iwama A
    J Exp Med; 2013 Nov; 210(12):2627-39. PubMed ID: 24218139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA methylation profiling of myelodysplastic syndrome hematopoietic progenitor cells during in vitro lineage-specific differentiation.
    Hopfer O; Komor M; Koehler IS; Schulze M; Hoelzer D; Thiel E; Hofmann WK
    Exp Hematol; 2007 May; 35(5):712-23. PubMed ID: 17577921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes.
    Paracatu LC; Schuettpelz LG
    Front Immunol; 2020; 11():1236. PubMed ID: 32625214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis.
    Joshi K; Zhang L; Breslin S J P; Kini AR; Zhang J
    J Exp Clin Cancer Res; 2022 Oct; 41(1):294. PubMed ID: 36203205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased 5-hydroxymethylcytosine levels are associated with TET2 mutation and unfavorable overall survival in myelodysplastic syndromes.
    Liu X; Zhang G; Yi Y; Xiao L; Pei M; Liu S; Luo Y; Zhong H; Xu Y; Zheng W; Shen J
    Leuk Lymphoma; 2013 Nov; 54(11):2466-73. PubMed ID: 23432690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration.
    Tseng YJ; Kageyama Y; Murdaugh RL; Kitano A; Kim JH; Hoegenauer KA; Tiessen J; Smith MH; Uryu H; Takahashi K; Martin JF; Samee MAH; Nakada D
    Nat Commun; 2024 Jan; 15(1):538. PubMed ID: 38225226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molecular pathogenesis of the myelodysplastic syndromes.
    Pellagatti A; Boultwood J
    Eur J Haematol; 2015 Jul; 95(1):3-15. PubMed ID: 25645650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations of myelodysplastic syndromes (MDS): An update.
    Ganguly BB; Kadam NN
    Mutat Res Rev Mutat Res; 2016; 769():47-62. PubMed ID: 27543316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.