These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 37071250)
1. Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists' interpretations at various levels. Goto M; Sakai K; Toyama Y; Nakai Y; Yamada K Jpn J Radiol; 2023 Oct; 41(10):1094-1103. PubMed ID: 37071250 [TBL] [Abstract][Full Text] [Related]
2. Diagnosis of Benign and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue. Zhou J; Zhang Y; Chang KT; Lee KE; Wang O; Li J; Lin Y; Pan Z; Chang P; Chow D; Wang M; Su MY J Magn Reson Imaging; 2020 Mar; 51(3):798-809. PubMed ID: 31675151 [TBL] [Abstract][Full Text] [Related]
3. MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning. Cong C; Li X; Zhang C; Zhang J; Sun K; Liu L; Ambale-Venkatesh B; Chen X; Wang Y J Magn Reson Imaging; 2024 Jan; 59(1):148-161. PubMed ID: 37013422 [TBL] [Abstract][Full Text] [Related]
4. Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists. Yu T; Yu R; Liu M; Wang X; Zhang J; Zheng Y; Lv F Eur J Radiol; 2024 Aug; 177():111556. PubMed ID: 38875748 [TBL] [Abstract][Full Text] [Related]
5. Presurgical Upgrade Prediction of DCIS to Invasive Ductal Carcinoma Using Time-dependent Deep Learning Models with DCE MRI. Mayfield JD; Ataya D; Abdalah M; Stringfield O; Bui MM; Raghunand N; Niell B; El Naqa I Radiol Artif Intell; 2024 Sep; 6(5):e230348. PubMed ID: 38900042 [TBL] [Abstract][Full Text] [Related]
6. High-temporal resolution DCE-MRI improves assessment of intra- and peri-breast lesions categorized as BI-RADS 4. Liu Y; Wang S; Qu J; Tang R; Wang C; Xiao F; Pang P; Sun Z; Xu M; Li J BMC Med Imaging; 2023 Apr; 23(1):58. PubMed ID: 37076817 [TBL] [Abstract][Full Text] [Related]
7. Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI. Truhn D; Schrading S; Haarburger C; Schneider H; Merhof D; Kuhl C Radiology; 2019 Feb; 290(2):290-297. PubMed ID: 30422086 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence Applied to Breast MRI for Improved Diagnosis. Jiang Y; Edwards AV; Newstead GM Radiology; 2021 Jan; 298(1):38-46. PubMed ID: 33078996 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI. Zhu J; Geng J; Shan W; Zhang B; Shen H; Dong X; Liu M; Li X; Cheng L Front Oncol; 2022; 12():946580. PubMed ID: 36033449 [TBL] [Abstract][Full Text] [Related]
10. BI-RADS Reading of Non-Mass Lesions on DCE-MRI and Differential Diagnosis Performed by Radiomics and Deep Learning. Zhou J; Liu YL; Zhang Y; Chen JH; Combs FJ; Parajuli R; Mehta RS; Liu H; Chen Z; Zhao Y; Pan Z; Wang M; Yu R; Su MY Front Oncol; 2021; 11():728224. PubMed ID: 34790569 [TBL] [Abstract][Full Text] [Related]
11. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. Zhou J; Luo LY; Dou Q; Chen H; Chen C; Li GJ; Jiang ZF; Heng PA J Magn Reson Imaging; 2019 Oct; 50(4):1144-1151. PubMed ID: 30924997 [TBL] [Abstract][Full Text] [Related]
12. Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions. Yin HL; Jiang Y; Xu Z; Jia HH; Lin GW J Cancer Res Clin Oncol; 2023 Jun; 149(6):2575-2584. PubMed ID: 35771263 [TBL] [Abstract][Full Text] [Related]
13. Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study. Zhou H; Hua Z; Gao J; Lin F; Chen Y; Zhang S; Zheng T; Wang Z; Shao H; Li W; Liu F; Li Q; Chen J; Wang X; Zhao F; Qu N; Xie H; Ma H; Zhang H; Mao N J Magn Reson Imaging; 2024 May; 59(5):1710-1722. PubMed ID: 37497811 [TBL] [Abstract][Full Text] [Related]
14. Breast DCE-MRI radiomics: a robust computer-aided system based on reproducible BI-RADS features across the influence of datasets bias and segmentation methods. Qiao M; Li C; Suo S; Cheng F; Hua J; Xue D; Guo Y; Xu J; Wang Y Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):921-930. PubMed ID: 32388693 [TBL] [Abstract][Full Text] [Related]
15. Breast MRI: does a clinical decision algorithm outweigh reader experience? Pötsch N; Korajac A; Stelzer P; Kapetas P; Milos RI; Dietzel M; Helbich TH; Clauser P; Baltzer PAT Eur Radiol; 2022 Oct; 32(10):6557-6564. PubMed ID: 35852572 [TBL] [Abstract][Full Text] [Related]
16. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis. Spuhler KD; Ding J; Liu C; Sun J; Serrano-Sosa M; Moriarty M; Huang C Magn Reson Med; 2019 Aug; 82(2):786-795. PubMed ID: 30957936 [TBL] [Abstract][Full Text] [Related]
17. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Wang Q; Chen H; Luo G; Li B; Shang H; Shao H; Sun S; Wang Z; Wang K; Cheng W Eur Radiol; 2022 Oct; 32(10):7163-7172. PubMed ID: 35488916 [TBL] [Abstract][Full Text] [Related]
18. Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models. Nam Y; Park GE; Kang J; Kim SH J Magn Reson Imaging; 2021 Mar; 53(3):818-826. PubMed ID: 33219624 [TBL] [Abstract][Full Text] [Related]
19. Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist. Eskreis-Winkler S; Sutton EJ; D'Alessio D; Gallagher K; Saphier N; Stember J; Martinez DF; Morris EA; Pinker K J Magn Reson Imaging; 2022 Oct; 56(4):1068-1076. PubMed ID: 35167152 [TBL] [Abstract][Full Text] [Related]
20. An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions. Wang L; Chang L; Luo R; Cui X; Liu H; Wu H; Chen Y; Zhang Y; Wu C; Li F; Liu H; Guan W; Wang D Eur Radiol; 2022 Jul; 32(7):4857-4867. PubMed ID: 35258676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]