BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37071462)

  • 21. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction.
    Lee S; Choi D; Shim JH; Nam W
    Sci Rep; 2020 Mar; 10(1):4979. PubMed ID: 32188900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue-engineered Maxillofacial Skeletal Defect Reconstruction by 3D Printed Beta-tricalcium phosphate Scaffold Tethered with Growth Factors and Fibrin Glue Implanted Autologous Bone Marrow-Derived Mesenchymal Stem Cells.
    Nair MA; Shaik KV; Kokkiligadda A; Gorrela H
    J Med Life; 2020; 13(3):418-425. PubMed ID: 33072218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study.
    Jing T; Yi Liu ; Xu L; Chen C; Liu F
    J Biomater Appl; 2022 Apr; 36(9):1567-1578. PubMed ID: 35135370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model.
    Xu Z; Sun Y; Dai H; Ma Y; Bing H
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration.
    Qinyuan D; Zhuqing W; Qing L; Yunsong L; Ping Z; Xiao Z; Yuting N; Hao L; Yongsheng Z; Longwei L
    Biomater Adv; 2024 May; 159():213804. PubMed ID: 38412627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Repair of calvarial defect using a tissue-engineered bone with simvastatin-loaded β-tricalcium phosphate scaffold and adipose derived stem cells in rabbits].
    Xu LY; Sun XJ; Zhang XL; Jin YQ; Wu YQ; Jiang XQ
    Shanghai Kou Qiang Yi Xue; 2013 Aug; 22(4):361-7. PubMed ID: 24100891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.
    Kwon DY; Park JH; Jang SH; Park JY; Jang JW; Min BH; Kim WD; Lee HB; Lee J; Kim MS
    J Tissue Eng Regen Med; 2018 Feb; 12(2):516-528. PubMed ID: 28763610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct inkjet writing type 1 bovine collagen/β-tricalcium phosphate scaffolds for bone regeneration.
    Cabrera Pereira A; Tovar N; Nayak VV; Mijares DQ; Smay JE; Torroni A; Flores RL; Witek L
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35347. PubMed ID: 38247237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c.
    Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells.
    Hatt LP; van der Heide D; Armiento AR; Stoddart MJ
    Front Cell Dev Biol; 2023; 11():1258161. PubMed ID: 37965582
    [No Abstract]   [Full Text] [Related]  

  • 34. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
    Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM
    Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-bioprinted alginate-based bioink scaffolds with β-tricalcium phosphate for bone regeneration applications.
    Wu YF; Wen YT; Salamanca E; Moe Aung L; Chao YQ; Chen CY; Sun YS; Chang WJ
    J Dent Sci; 2024 Apr; 19(2):1116-1125. PubMed ID: 38618055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus Quadrangularis extract-loaded polydopamine coatings.
    Robertson SF; Bose S
    J Mech Behav Biomed Mater; 2020 Nov; 111():103945. PubMed ID: 32920263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds.
    Hashemi S; Mohammadi Amirabad L; Farzad-Mohajeri S; Rezai Rad M; Fahimipour F; Ardeshirylajimi A; Dashtimoghadam E; Salehi M; Soleimani M; Dehghan MM; Tayebi L; Khojasteh A
    Cell Tissue Res; 2021 May; 384(2):403-421. PubMed ID: 33433691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible.
    Lee JS; Park TH; Ryu JY; Kim DK; Oh EJ; Kim HM; Shim JH; Yun WS; Huh JB; Moon SH; Kang SS; Chung HY
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-Printed Multifunctional Polyetheretherketone Bone Scaffold for Multimodal Treatment of Osteosarcoma and Osteomyelitis.
    Zhu C; He M; Sun D; Huang Y; Huang L; Du M; Wang J; Wang J; Li Z; Hu B; Song Y; Li Y; Feng G; Liu L; Zhang L
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47327-47340. PubMed ID: 34587454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.