These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37071514)

  • 1. Convolutional Neural Network-Based Lane-Change Strategy via Motion Image Representation for Automated and Connected Vehicles.
    Cheng S; Wang Z; Yang B; Nakano K
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12953-12964. PubMed ID: 37071514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian Driver Agent Model for Autonomous Vehicles System Based on Knowledge-Aware and Real-Time Data.
    Ma J; Xie H; Song K; Liu H
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33418987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Law compliance decision making for autonomous vehicles on highways.
    Ma X; Song L; Zhao C; Wu S; Yu W; Wang W; Yang L; Wang H
    Accid Anal Prev; 2024 Sep; 204():107620. PubMed ID: 38823082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Lane-Changing Decision Making and Planning of Autonomous Vehicles Based on GCN and Multi-Segment Polynomial Curve Optimization.
    Feng F; Wei C; Zhao B; Lv Y; He Y
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-like Decision-Making System for Overtaking Stationary Vehicles Based on Traffic Scene Interpretation.
    Yang J; Lee S; Lim W; Sunwoo M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing Model Predictive Control and Steady-State Dynamics for Lane Detection for Automated Vehicles in a Variety of Occlusion in Clothoid-Form Roads.
    Waykole S; Shiwakoti N; Stasinopoulos P
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring the Driver's Lane Change Intention through LiDAR-Based Environment Analysis Using Convolutional Neural Networks.
    Díaz-Álvarez A; Clavijo M; Jiménez F; Serradilla F
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Dynamic Driving Behavior in Simulation Test for Unmanned Vehicles via Multi-Sensor Data.
    Zhao D; Li Y; Liu Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Vehicle Lane Change Warning Method Based on Deep Learning Image Processing.
    Zhang Q; Sun Z; Shu H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Dynamic Lane-Changing Driving Strategy for CAV in Diverging Areas Based on MPC System.
    Liu H; Song X; Liu B; Liu J; Gao H; Liang Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving.
    Gonçalves RC; Louw TL; Madigan R; Quaresma M; Romano R; Merat N
    Accid Anal Prev; 2022 Sep; 174():106726. PubMed ID: 35716544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Lane-Changing Decision-Making Behavior of Autonomous Vehicles Based on Molecular Dynamics.
    Qu D; Zhang K; Song H; Wang T; Dai S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable Road Scene Interpretation Based on ITOM with the Integrated Fusion of Vehicle and Lane Tracker in Dense Traffic Situation.
    Jeong J; Yoon YH; Park JH
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection.
    Lin HY; Dai JM; Wu LT; Chen LQ
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of the real-world safety effect of a lane change driver support system and characteristics of lane change crashes based on insurance claims data.
    Isaksson-Hellman I; Lindman M
    Traffic Inj Prev; 2018 Feb; 19(sup1):S104-S111. PubMed ID: 29584482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of traffic density on drivers' lane change and overtaking maneuvers in freeway situation-A driving simulator-based study.
    Yang L; Li X; Guan W; Zhang HM; Fan L
    Traffic Inj Prev; 2018; 19(6):594-600. PubMed ID: 29757689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.