These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37072397)

  • 1. PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces.
    Krapp LF; Abriata LA; Cortés Rodriguez F; Dal Peraro M
    Nat Commun; 2023 Apr; 14(1):2175. PubMed ID: 37072397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PeSTo-Carbs: Geometric Deep Learning for Prediction of Protein-Carbohydrate Binding Interfaces.
    Bibekar P; Krapp L; Peraro MD
    J Chem Theory Comput; 2024 Apr; 20(8):2985-2991. PubMed ID: 38602504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale annotation of protein binding sites via language model and geometric deep learning.
    Yuan Q; Tian C; Yang Y
    Elife; 2024 Apr; 13():. PubMed ID: 38630609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multimodal Transformer Network for protein-small molecule interactions enhances predictions of kinase inhibition and enzyme-substrate relationships.
    Kroll A; Ranjan S; Lercher MJ
    PLoS Comput Biol; 2024 May; 20(5):e1012100. PubMed ID: 38768223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning the structural determinants of protein biochemical properties by comparing structural ensembles with DiffNets.
    Ward MD; Zimmerman MI; Meller A; Chung M; Swamidass SJ; Bowman GR
    Nat Commun; 2021 May; 12(1):3023. PubMed ID: 34021153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria.
    Gao M; Nakajima An D; Skolnick J
    Elife; 2022 Dec; 11():. PubMed ID: 36576775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepHomo2.0: improved protein-protein contact prediction of homodimers by transformer-enhanced deep learning.
    Lin P; Yan Y; Huang SY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36440949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly accurate carbohydrate-binding site prediction with DeepGlycanSite.
    He X; Zhao L; Tian Y; Li R; Chu Q; Gu Z; Zheng M; Wang Y; Li S; Jiang H; Jiang Y; Wen L; Wang D; Cheng X
    Nat Commun; 2024 Jun; 15(1):5163. PubMed ID: 38886381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric epitope and paratope prediction.
    Pegoraro M; Dominé C; Rodolà E; Veličković P; Deac A
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38984742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models.
    Cohen T; Halfon M; Carter L; Sharkey B; Jain T; Sivasubramanian A; Schneidman-Duhovny D
    Methods Enzymol; 2023; 678():237-262. PubMed ID: 36641210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformer-based deep learning for predicting protein properties in the life sciences.
    Chandra A; Tünnermann L; Löfstedt T; Gratz R
    Elife; 2023 Jan; 12():. PubMed ID: 36651724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo design of protein interactions with learned surface fingerprints.
    Gainza P; Wehrle S; Van Hall-Beauvais A; Marchand A; Scheck A; Harteveld Z; Buckley S; Ni D; Tan S; Sverrisson F; Goverde C; Turelli P; Raclot C; Teslenko A; Pacesa M; Rosset S; Georgeon S; Marsden J; Petruzzella A; Liu K; Xu Z; Chai Y; Han P; Gao GF; Oricchio E; Fierz B; Trono D; Stahlberg H; Bronstein M; Correia BE
    Nature; 2023 May; 617(7959):176-184. PubMed ID: 37100904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry.
    Li C; Wang J; Niu Z; Yao J; Zeng X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified geometric representations of protein structures identify complementary interaction interfaces.
    McCafferty CL; Marcotte EM; Taylor DW
    Proteins; 2021 Mar; 89(3):348-360. PubMed ID: 33140424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting nucleic acid binding interfaces from structural models of proteins.
    Dror I; Shazman S; Mukherjee S; Zhang Y; Glaser F; Mandel-Gutfreund Y
    Proteins; 2012 Feb; 80(2):482-9. PubMed ID: 22086767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric deep learning of RNA structure.
    Townshend RJL; Eismann S; Watkins AM; Rangan R; Karelina M; Das R; Dror RO
    Science; 2021 Aug; 373(6558):1047-1051. PubMed ID: 34446608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blind predictions of protein interfaces by docking calculations in CAPRI.
    Lensink MF; Wodak SJ
    Proteins; 2010 Nov; 78(15):3085-95. PubMed ID: 20839234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures.
    Wang K; Yin Z; Sang C; Xia W; Wang Y; Sun T; Xu X
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130150. PubMed ID: 38365157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Labeling Methods for Deep Learning Real-Valued Inter-Residue Distance Prediction.
    Barger J; Adhikari B
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3586-3594. PubMed ID: 34559660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.