BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37072400)

  • 1. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy.
    Chen X; MacGregor DR; Stefanato FL; Zhang N; Barros-Galvão T; Penfield S
    Nat Commun; 2023 Apr; 14(1):2220. PubMed ID: 37072400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana.
    Yano R; Takebayashi Y; Nambara E; Kamiya Y; Seo M
    Plant J; 2013 Jun; 74(5):815-28. PubMed ID: 23464703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parental and Environmental Control of Seed Dormancy in
    Iwasaki M; Penfield S; Lopez-Molina L
    Annu Rev Plant Biol; 2022 May; 73():355-378. PubMed ID: 35138879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase HDA19 interacts with histone methyltransferase SUVH5 to regulate seed dormancy in Arabidopsis.
    Zhou Y; Yang P; Zhang F; Luo X; Xie J
    Plant Biol (Stuttg); 2020 Nov; 22(6):1062-1071. PubMed ID: 32643178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development.
    MacGregor DR; Zhang N; Iwasaki M; Chen M; Dave A; Lopez-Molina L; Penfield S
    Plant J; 2019 Apr; 98(2):277-290. PubMed ID: 30570804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time.
    Chen M; Penfield S
    Science; 2018 Jun; 360(6392):1014-1017. PubMed ID: 29853684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy.
    Fedi F; O'Neill CM; Menard G; Trick M; Dechirico S; Corbineau F; Bailly C; Eastmond PJ; Penfield S
    Plant Physiol; 2017 May; 174(1):276-283. PubMed ID: 28292857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel RGL2-DOF6 Complex Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a GATA Transcription Factor.
    Ravindran P; Verma V; Stamm P; Kumar PP
    Mol Plant; 2017 Oct; 10(10):1307-1320. PubMed ID: 28917589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds.
    van Zanten M; Zöll C; Wang Z; Philipp C; Carles A; Li Y; Kornet NG; Liu Y; Soppe WJ
    Plant J; 2014 Nov; 80(3):475-88. PubMed ID: 25146719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.
    De Giorgi J; Piskurewicz U; Loubery S; Utz-Pugin A; Bailly C; Mène-Saffrané L; Lopez-Molina L
    PLoS Genet; 2015 Dec; 11(12):e1005708. PubMed ID: 26681322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings.
    Chen N; Wang H; Abdelmageed H; Veerappan V; Tadege M; Allen RD
    New Phytol; 2020 Aug; 227(3):840-856. PubMed ID: 32201955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds.
    Chen H; Ruan J; Chu P; Fu W; Liang Z; Li Y; Tong J; Xiao L; Liu J; Li C; Huang S
    Plant J; 2020 Jan; 101(2):310-323. PubMed ID: 31536657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PHD-containing protein EARLY BOLTING IN SHORT DAYS regulates seed dormancy in Arabidopsis.
    Narro-Diego L; López-González L; Jarillo JA; Piñeiro M
    Plant Cell Environ; 2017 Oct; 40(10):2393-2405. PubMed ID: 28770581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The H3K27me3 Demethylase RELATIVE OF EARLY FLOWERING6 Suppresses Seed Dormancy by Inducing Abscisic Acid Catabolism.
    Chen H; Tong J; Fu W; Liang Z; Ruan J; Yu Y; Song X; Yuan L; Xiao L; Liu J; Cui Y; Huang S; Li C
    Plant Physiol; 2020 Dec; 184(4):1969-1978. PubMed ID: 33037128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Evening Complex and the Chromatin-Remodeling Factor PICKLE Coordinately Control Seed Dormancy by Directly Repressing
    Zha P; Liu S; Li Y; Ma T; Yang L; Jing Y; Lin R
    Plant Commun; 2020 Mar; 1(2):100011. PubMed ID: 33404551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis.
    Shu K; Zhang H; Wang S; Chen M; Wu Y; Tang S; Liu C; Feng Y; Cao X; Xie Q
    PLoS Genet; 2013 Jun; 9(6):e1003577. PubMed ID: 23818868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed germination and dormancy: The classic story, new puzzles, and evolution.
    Nonogaki H
    J Integr Plant Biol; 2019 May; 61(5):541-563. PubMed ID: 30565406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic, Epigenetic, and Environmental Control of Seed Dormancy and Germination.
    Otani M; Zheng L; Kawakami N
    Methods Mol Biol; 2024; 2830():3-12. PubMed ID: 38977563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals.
    Footitt S; Müller K; Kermode AR; Finch-Savage WE
    Plant J; 2015 Feb; 81(3):413-25. PubMed ID: 25439058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes.
    Footitt S; Clay HA; Dent K; Finch-Savage WE
    New Phytol; 2014 May; 202(3):929-939. PubMed ID: 24444091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.