These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37072563)
1. Predicting Glass-Forming Ability of Pharmaceutical Compounds by Using Machine Learning Technologies. Jiang J; Ouyang D; Williams RO AAPS PharmSciTech; 2023 Apr; 24(5):103. PubMed ID: 37072563 [TBL] [Abstract][Full Text] [Related]
2. Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Alhalaweh A; Alzghoul A; Kaialy W; Mahlin D; Bergström CA Mol Pharm; 2014 Sep; 11(9):3123-32. PubMed ID: 25014125 [TBL] [Abstract][Full Text] [Related]
3. The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion. Jiang J; Lu A; Ma X; Ouyang D; Williams RO Int J Pharm X; 2023 Dec; 5():100164. PubMed ID: 36798832 [TBL] [Abstract][Full Text] [Related]
4. Glass-forming ability of compounds in marketed amorphous drug products. Wyttenbach N; Kuentz M Eur J Pharm Biopharm; 2017 Mar; 112():204-208. PubMed ID: 27903457 [TBL] [Abstract][Full Text] [Related]
5. Is there a correlation between the glass forming ability of a drug and its supersaturation propensity? Blaabjerg LI; Lindenberg E; Löbmann K; Grohganz H; Rades T Int J Pharm; 2018 Mar; 538(1-2):243-249. PubMed ID: 29341914 [TBL] [Abstract][Full Text] [Related]
6. An investigation into the crystallization tendency/kinetics of amorphous active pharmaceutical ingredients: A case study with dipyridamole and cinnarizine. Baghel S; Cathcart H; Redington W; O'Reilly NJ Eur J Pharm Biopharm; 2016 Jul; 104():59-71. PubMed ID: 27108783 [TBL] [Abstract][Full Text] [Related]
7. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. Alhalaweh A; Alzghoul A; Mahlin D; Bergström CAS Int J Pharm; 2015 Nov; 495(1):312-317. PubMed ID: 26341321 [TBL] [Abstract][Full Text] [Related]
8. Long-Term Physical (In)Stability of Spray-Dried Amorphous Drugs: Relationship with Glass-Forming Ability and Physicochemical Properties. Edueng K; Bergström CAS; Gråsjö J; Mahlin D Pharmaceutics; 2019 Aug; 11(9):. PubMed ID: 31438566 [TBL] [Abstract][Full Text] [Related]
9. Influence of Glass Forming Ability on the Physical Stability of Supersaturated Amorphous Solid Dispersions. Blaabjerg LI; Bulduk B; Lindenberg E; Löbmann K; Rades T; Grohganz H J Pharm Sci; 2019 Aug; 108(8):2561-2569. PubMed ID: 30878513 [TBL] [Abstract][Full Text] [Related]
10. Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mahlin D; Ponnambalam S; Höckerfelt MH; Bergström CA Mol Pharm; 2011 Apr; 8(2):498-506. PubMed ID: 21344945 [TBL] [Abstract][Full Text] [Related]
11. Crystallization tendency of APIs possessing different thermal and glass related properties in amorphous solid dispersions. Kapourani A; Vardaka E; Katopodis K; Kachrimanis K; Barmpalexis P Int J Pharm; 2020 Apr; 579():119149. PubMed ID: 32070762 [TBL] [Abstract][Full Text] [Related]
12. Understanding the glass-forming ability of active pharmaceutical ingredients for designing supersaturating dosage forms. Kawakami K; Usui T; Hattori M J Pharm Sci; 2012 Sep; 101(9):3239-48. PubMed ID: 22531946 [TBL] [Abstract][Full Text] [Related]
13. Influence of preparation pathway on the glass forming ability. Blaabjerg LI; Lindenberg E; Rades T; Grohganz H; Löbmann K Int J Pharm; 2017 Apr; 521(1-2):232-238. PubMed ID: 28232267 [TBL] [Abstract][Full Text] [Related]
14. Early drug development predictions of glass-forming ability and physical stability of drugs. Mahlin D; Bergström CA Eur J Pharm Sci; 2013 May; 49(2):323-32. PubMed ID: 23557841 [TBL] [Abstract][Full Text] [Related]
15. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. Baird JA; Van Eerdenbrugh B; Taylor LS J Pharm Sci; 2010 Sep; 99(9):3787-806. PubMed ID: 20623696 [TBL] [Abstract][Full Text] [Related]
16. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. Baghel S; Cathcart H; O'Reilly NJ J Pharm Sci; 2016 Sep; 105(9):2527-2544. PubMed ID: 26886314 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability. Sun YT; Bai HY; Li MZ; Wang WH J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303 [TBL] [Abstract][Full Text] [Related]
18. The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formers. Blaabjerg LI; Grohganz H; Lindenberg E; Löbmann K; Müllertz A; Rades T Pharmaceutics; 2018 Sep; 10(4):. PubMed ID: 30241425 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses. Ghorbani A; Askari A; Malekan M; Nili-Ahmadabadi M Sci Rep; 2022 Jul; 12(1):11754. PubMed ID: 35817887 [TBL] [Abstract][Full Text] [Related]
20. Influence of the crystallization tendencies of pharmaceutical glasses on the applicability of the Adam-Gibbs-Vogel and Vogel-Tammann-Fulcher equations in the prediction of their long-term physical stability. Yamaguchi K; Mizoguchi R; Kawakami K; Miyazaki T Int J Pharm; 2022 Oct; 626():122158. PubMed ID: 36058407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]